[ https://issues.apache.org/jira/browse/FLINK-6442?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16170684#comment-16170684 ]
ASF GitHub Bot commented on FLINK-6442: --------------------------------------- Github user fhueske commented on a diff in the pull request: https://github.com/apache/flink/pull/3829#discussion_r139471593 --- Diff: docs/dev/table/sql.md --- @@ -71,15 +85,29 @@ val ds: DataStream[(Long, String, Integer)] = env.addSource(...) // SQL query with an inlined (unregistered) table val table = ds.toTable(tableEnv, 'user, 'product, 'amount) -val result = tableEnv.sql( +val result = tableEnv.sqlQuery( s"SELECT SUM(amount) FROM $table WHERE product LIKE '%Rubber%'") // SQL query with a registered table // register the DataStream under the name "Orders" tableEnv.registerDataStream("Orders", ds, 'user, 'product, 'amount) // run a SQL query on the Table and retrieve the result as a new Table -val result2 = tableEnv.sql( +val result2 = tableEnv.sqlQuery( "SELECT product, amount FROM Orders WHERE product LIKE '%Rubber%'") + +// SQL update with a registered table +// register the DataStream as table "Orders" +tableEnv.registerDataStream("Orders", ds, 'user, 'product, 'amount) +// create a TableSink +TableSink csvSink = new CsvTableSink("/path/to/file", ...) +// define the field names and types +val fieldNames: Arary[String] = Array("id", "product", "amount") --- End diff -- fix schema of result (must match query result schema) > Extend TableAPI Support Sink Table Registration and ‘insert into’ Clause in > SQL > ------------------------------------------------------------------------------- > > Key: FLINK-6442 > URL: https://issues.apache.org/jira/browse/FLINK-6442 > Project: Flink > Issue Type: New Feature > Components: Table API & SQL > Reporter: lincoln.lee > Assignee: lincoln.lee > Priority: Minor > > Currently in TableAPI there’s only registration method for source table, > when we use SQL writing a streaming job, we should add additional part for > the sink, like TableAPI does: > {code} > val sqlQuery = "SELECT * FROM MyTable WHERE _1 = 3" > val t = StreamTestData.getSmall3TupleDataStream(env) > tEnv.registerDataStream("MyTable", t) > // one way: invoke tableAPI’s writeToSink method directly > val result = tEnv.sql(sqlQuery) > result.writeToSink(new YourStreamSink) > // another way: convert to datastream first and then invoke addSink > val result = tEnv.sql(sqlQuery).toDataStream[Row] > result.addSink(new StreamITCase.StringSink) > {code} > From the api we can see the sink table always be a derived table because its > 'schema' is inferred from the result type of upstream query. > Compare to traditional RDBMS which support DML syntax, a query with a target > output could be written like this: > {code} > insert into table target_table_name > [(column_name [ ,...n ])] > query > {code} > The equivalent form of the example above is as follows: > {code} > tEnv.registerTableSink("targetTable", new YourSink) > val sql = "INSERT INTO targetTable SELECT a, b, c FROM sourceTable" > val result = tEnv.sql(sql) > {code} > It is supported by Calcite’s grammar: > {code} > insert:( INSERT | UPSERT ) INTO tablePrimary > [ '(' column [, column ]* ')' ] > query > {code} > I'd like to extend Flink TableAPI to support such feature. see design doc: > https://goo.gl/n3phK5 -- This message was sent by Atlassian JIRA (v6.4.14#64029)