[ https://issues.apache.org/jira/browse/FLINK-3871?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15983204#comment-15983204 ]
ASF GitHub Bot commented on FLINK-3871: --------------------------------------- Github user fhueske commented on a diff in the pull request: https://github.com/apache/flink/pull/3663#discussion_r113236267 --- Diff: flink-connectors/flink-connector-kafka-base/src/main/java/org/apache/flink/streaming/util/serialization/AvroRowSerializationSchema.java --- @@ -0,0 +1,122 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.flink.streaming.util.serialization; + +import java.io.ByteArrayOutputStream; +import java.io.IOException; +import java.util.List; +import org.apache.avro.Schema; +import org.apache.avro.generic.GenericData; +import org.apache.avro.generic.GenericRecord; +import org.apache.avro.io.DatumWriter; +import org.apache.avro.io.Encoder; +import org.apache.avro.io.EncoderFactory; +import org.apache.avro.reflect.ReflectDatumWriter; +import org.apache.avro.specific.SpecificData; +import org.apache.avro.specific.SpecificRecord; +import org.apache.avro.util.Utf8; +import org.apache.flink.types.Row; +import org.apache.flink.util.Preconditions; + +/** + * Serialization schema that serializes {@link Row} over {@link SpecificRecord} into a Avro bytes. + */ +public class AvroRowSerializationSchema implements SerializationSchema<Row> { + + /** + * Avro serialization schema. + */ + private final Schema schema; + + /** + * Writer to serialize Avro record into a byte array. + */ + private final DatumWriter<GenericRecord> datumWriter; + + /** + * Output stream to serialize records into byte array. + */ + private final ByteArrayOutputStream arrayOutputStream = new ByteArrayOutputStream(); + + /** + * Low-level class for serialization of Avro values. + */ + private final Encoder encoder = EncoderFactory.get().binaryEncoder(arrayOutputStream, null); + + /** + * Creates a Avro serialization schema for the given schema. + * + * @param recordClazz Avro record class used to deserialize Avro's record to Flink's row + */ + @SuppressWarnings("unchecked") + public AvroRowSerializationSchema(Class<? extends SpecificRecord> recordClazz) { + Preconditions.checkNotNull(recordClazz, "Avro record class must not be null."); + this.schema = SpecificData.get().getSchema(recordClazz); + this.datumWriter = new ReflectDatumWriter<>(schema); + } + + @Override + @SuppressWarnings("unchecked") + public byte[] serialize(Row row) { + // convert to record + final Object record = convertToRecord(schema, row); + + // write + try { + arrayOutputStream.reset(); + datumWriter.write((GenericRecord) record, encoder); + encoder.flush(); + return arrayOutputStream.toByteArray(); + } catch (IOException e) { + throw new RuntimeException("Failed to serialize Row.", e); + } + } + + /** + * Converts a (nested) Flink Row into Avro's {@link GenericRecord}. + * Strings are converted into Avro's {@link Utf8} fields. + */ + private static Object convertToRecord(Schema schema, Object rowObj) { + if (rowObj instanceof Row) { + // records can be wrapped in a union + if (schema.getType() == Schema.Type.UNION) { + final List<Schema> types = schema.getTypes(); + if (types.size() == 2 && types.get(0).getType() == Schema.Type.NULL && types.get(1).getType() == Schema.Type.RECORD) { + schema = types.get(1); + } + else { + throw new RuntimeException("Currently we only support schemas of the following form: UNION[null, RECORD]. Given: " + schema); + } + } else if (schema.getType() != Schema.Type.RECORD) { + throw new RuntimeException("Record type for row type expected. But is: " + schema); + } + final List<Schema.Field> fields = schema.getFields(); + final GenericRecord record = new GenericData.Record(schema); --- End diff -- Can we reuse the `GenericRecord`? > Add Kafka TableSource with Avro serialization > --------------------------------------------- > > Key: FLINK-3871 > URL: https://issues.apache.org/jira/browse/FLINK-3871 > Project: Flink > Issue Type: New Feature > Components: Table API & SQL > Reporter: Fabian Hueske > Assignee: Ivan Mushketyk > > Add a Kafka TableSource which supports Avro serialized data. > The KafkaAvroTableSource should support two modes: > # SpecificRecord Mode: In this case the user specifies a class which was > code-generated by Avro depending on a schema. Flink treats these classes as > regular POJOs. Hence, they are also natively supported by the Table API and > SQL. Classes generated by Avro contain their Schema in a static field. The > schema should be used to automatically derive field names and types. Hence, > there is no additional information required than the name of the class. > # GenericRecord Mode: In this case the user specifies an Avro Schema. The > schema is used to deserialize the data into a GenericRecord which must be > translated into possibly nested {{Row}} based on the schema information. > Again, the Avro Schema is used to automatically derive the field names and > types. This mode is less efficient than the SpecificRecord mode because the > {{GenericRecord}} needs to be converted into {{Row}}. > This feature depends on FLINK-5280, i.e., support for nested data in > {{TableSource}}. -- This message was sent by Atlassian JIRA (v6.3.15#6346)