[ 
https://issues.apache.org/jira/browse/FLINK-6228?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15977684#comment-15977684
 ] 

ASF GitHub Bot commented on FLINK-6228:
---------------------------------------

Github user fhueske commented on a diff in the pull request:

    https://github.com/apache/flink/pull/3743#discussion_r112570917
  
    --- Diff: 
flink-libraries/flink-table/src/test/scala/org/apache/flink/table/api/scala/stream/table/OverWindowITCase.scala
 ---
    @@ -0,0 +1,265 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.flink.table.api.scala.stream.table
    +
    +import org.apache.flink.api.scala._
    +import org.apache.flink.streaming.api.TimeCharacteristic
    +import org.apache.flink.streaming.api.functions.source.SourceFunction
    +import 
org.apache.flink.streaming.api.functions.source.SourceFunction.SourceContext
    +import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
    +import org.apache.flink.streaming.api.watermark.Watermark
    +import org.apache.flink.table.api.TableEnvironment
    +import org.apache.flink.table.api.scala._
    +import 
org.apache.flink.table.api.scala.stream.table.OverWindowITCase.{RowTimeSourceFunction}
    +import org.apache.flink.table.api.scala.stream.utils.{StreamITCase, 
StreamingWithStateTestBase}
    +import org.apache.flink.types.Row
    +import org.junit.Assert._
    +import org.junit.Test
    +
    +import scala.collection.mutable
    +
    +class OverWindowITCase extends StreamingWithStateTestBase {
    +
    +  @Test
    +  def testProcTimeUnBoundedPartitionedRowOver(): Unit = {
    +
    +    val data = List(
    +      (1L, 1, "Hello"),
    +      (2L, 2, "Hello"),
    +      (3L, 3, "Hello"),
    +      (4L, 4, "Hello"),
    +      (5L, 5, "Hello"),
    +      (6L, 6, "Hello"),
    +      (7L, 7, "Hello World"),
    +      (8L, 8, "Hello World"),
    +      (20L, 20, "Hello World"))
    +
    +    val env = StreamExecutionEnvironment.getExecutionEnvironment
    +    env.setParallelism(1)
    +    val tEnv = TableEnvironment.getTableEnvironment(env)
    +    StreamITCase.testResults = mutable.MutableList()
    +    StreamITCase.clear
    +    val stream = env.fromCollection(data)
    +    val table = stream.toTable(tEnv, 'a, 'b, 'c)
    +
    +    val windowedTable = table
    +      .window(
    +        Over partitionBy 'c orderBy 'procTime preceding UNBOUNDED_ROW 
following CURRENT_ROW as 'w)
    +      .select('c, 'b.count over 'w as 'mycount)
    +      .select('c, 'mycount)
    +
    +    val results = windowedTable.toDataStream[Row]
    +    results.addSink(new StreamITCase.StringSink)
    +    env.execute()
    +
    +    val expected = Seq(
    +      "Hello World,1", "Hello World,2", "Hello World,3",
    +      "Hello,1", "Hello,2", "Hello,3", "Hello,4", "Hello,5", "Hello,6")
    +    assertEquals(expected.sorted, StreamITCase.testResults.sorted)
    +  }
    +
    +  @Test
    +  def testRowTimeUnBoundedPartitionedRangeOver(): Unit = {
    +    val env = StreamExecutionEnvironment.getExecutionEnvironment
    +    val tEnv = TableEnvironment.getTableEnvironment(env)
    +    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
    +    env.setStateBackend(getStateBackend)
    +    StreamITCase.testResults = mutable.MutableList()
    +    StreamITCase.clear
    +    env.setParallelism(1)
    +
    +    val data = Seq(
    +      Left(14000005L, (1, 1L, "Hi")),
    +      Left(14000000L, (2, 1L, "Hello")),
    +      Left(14000002L, (1, 1L, "Hello")),
    +      Left(14000002L, (1, 2L, "Hello")),
    +      Left(14000002L, (1, 3L, "Hello world")),
    +      Left(14000003L, (2, 2L, "Hello world")),
    +      Left(14000003L, (2, 3L, "Hello world")),
    +      Right(14000020L),
    +      Left(14000021L, (1, 4L, "Hello world")),
    +      Left(14000022L, (1, 5L, "Hello world")),
    +      Left(14000022L, (1, 6L, "Hello world")),
    +      Left(14000022L, (1, 7L, "Hello world")),
    +      Left(14000023L, (2, 4L, "Hello world")),
    +      Left(14000023L, (2, 5L, "Hello world")),
    +      Right(14000030L)
    +    )
    +    val table = env
    +      .addSource(new RowTimeSourceFunction[(Int, Long, String)](data))
    +      .toTable(tEnv).as('a, 'b, 'c)
    +
    +    val windowedTable = table
    +      .window(Over partitionBy 'a orderBy 'rowtime preceding 
UNBOUNDED_RANGE following
    +         CURRENT_RANGE as 'w)
    +      .select(
    +        'a, 'b, 'c,
    +        'b.sum over 'w,
    +        'b.count over 'w,
    +        'b.avg over 'w,
    +        'b.max over 'w,
    +        'b.min over 'w)
    +
    +    val result = windowedTable.toDataStream[Row]
    +    result.addSink(new StreamITCase.StringSink)
    +    env.execute()
    +
    +    val expected = mutable.MutableList(
    +      "1,1,Hello,6,3,2,3,1",
    +      "1,2,Hello,6,3,2,3,1",
    +      "1,3,Hello world,6,3,2,3,1",
    +      "1,1,Hi,7,4,1,3,1",
    +      "2,1,Hello,1,1,1,1,1",
    +      "2,2,Hello world,6,3,2,3,1",
    +      "2,3,Hello world,6,3,2,3,1",
    +      "1,4,Hello world,11,5,2,4,1",
    +      "1,5,Hello world,29,8,3,7,1",
    +      "1,6,Hello world,29,8,3,7,1",
    +      "1,7,Hello world,29,8,3,7,1",
    +      "2,4,Hello world,15,5,3,5,1",
    +      "2,5,Hello world,15,5,3,5,1"
    +    )
    +
    +    assertEquals(expected.sorted, StreamITCase.testResults.sorted)
    +  }
    +
    +  @Test
    +  def testProcTimeBoundedPartitionedRangeOver(): Unit = {
    +
    +    val data = List(
    +      (1, 1L, 0, "Hallo", 1L),
    +      (2, 2L, 1, "Hallo Welt", 2L),
    +      (2, 3L, 2, "Hallo Welt wie", 1L),
    +      (3, 4L, 3, "Hallo Welt wie gehts?", 2L),
    +      (3, 5L, 4, "ABC", 2L),
    +      (3, 6L, 5, "BCD", 3L),
    +      (4, 7L, 6, "CDE", 2L),
    +      (4, 8L, 7, "DEF", 1L),
    +      (4, 9L, 8, "EFG", 1L),
    +      (4, 10L, 9, "FGH", 2L),
    +      (5, 11L, 10, "GHI", 1L),
    +      (5, 12L, 11, "HIJ", 3L),
    +      (5, 13L, 12, "IJK", 3L),
    +      (5, 14L, 13, "JKL", 2L),
    +      (5, 15L, 14, "KLM", 2L))
    +
    +    val env = StreamExecutionEnvironment.getExecutionEnvironment
    +    env.setStateBackend(getStateBackend)
    +    val tEnv = TableEnvironment.getTableEnvironment(env)
    +    env.setParallelism(1)
    +    StreamITCase.testResults = mutable.MutableList()
    +
    +    val stream = env.fromCollection(data)
    +    val table = stream.toTable(tEnv).as('a, 'b, 'c, 'd, 'e)
    +
    +    val windowedTable = table
    +      .window(Over partitionBy 'a orderBy 'proctime preceding 4.rows 
following CURRENT_ROW as 'w)
    +      .select('a, 'c.sum over 'w, 'c.min over 'w)
    +    val result = windowedTable.toDataStream[Row]
    +    result.addSink(new StreamITCase.StringSink)
    +    env.execute()
    +
    +    val expected = mutable.MutableList(
    +      "1,0,0",
    +      "2,1,1",
    +      "2,3,1",
    +      "3,3,3",
    +      "3,7,3",
    +      "3,12,3",
    +      "4,6,6",
    +      "4,13,6",
    +      "4,21,6",
    +      "4,30,6",
    +      "5,10,10",
    +      "5,21,10",
    +      "5,33,10",
    +      "5,46,10",
    +      "5,60,10")
    +
    +    assertEquals(expected.sorted, StreamITCase.testResults.sorted)
    +  }
    +
    +  @Test
    +  def testRowTimeBoundedPartitionedRowOver(): Unit = {
    --- End diff --
    
    Add a test for rowtime bounded range as well?


> Integrating the OVER windows in the Table API
> ---------------------------------------------
>
>                 Key: FLINK-6228
>                 URL: https://issues.apache.org/jira/browse/FLINK-6228
>             Project: Flink
>          Issue Type: Sub-task
>          Components: Table API & SQL
>            Reporter: sunjincheng
>            Assignee: sunjincheng
>
> Syntax:
> {code}
> table
>    .overWindows(
>     (Rows|Range [ partitionBy value_expression , ... [ n ]] [ orderBy 
> order_by_expression] 
>       (preceding  
> UNBOUNDED|value_specification.(rows|milli|second|minute|hour|day|month|year)|CURRENTROW)
>      [following 
> UNBOUNDED|value_specification.(rows|milli|second|minute|hour|day|month|year)|CURRENTROW]
>     as alias,...[n])
>    )
>   .select( [col1,...[n]], (agg(col1) OVER overWindowAlias, … [n])
> {code}
> Implement restrictions:
> * All OVER clauses in the same SELECT clause must be exactly the same.
> * The PARTITION BY clause is optional (no partitioning results in single 
> threaded execution).
> * The ORDER BY Before the 
> [FLINK-5884|https://issues.apache.org/jira/browse/FLINK-5884]  implementation 
> orderBy may only have ‘rowtime/’proctime(for stream)/‘specific-time-field(for 
> batch).
> * FOLLOWING is not supported.
> User interface design document [See | 
> https://docs.google.com/document/d/13Z-Ovx3jwtmzkSweJyGkMy751BouhuJ29Y1CTNZt2DI/edit#]



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

Reply via email to