[ https://issues.apache.org/jira/browse/FLINK-1731?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14547149#comment-14547149 ]
Hae Joon Lee commented on FLINK-1731: ------------------------------------- Hi, I am testing K-mean right now. I faced an error "could not find implicit value for parameter" I solved a lot of things except for this one. * Error:(142, 53) could not find implicit value for parameter op: breeze.linalg.operators.OpDiv.Impl2[breeze.linalg.Vector[Double],Long,That].map(x => LabeledVector(x._1, x._2.asBreeze / 1L)).withForwardedFields("_1->id") {code:title=KMeans.scala|borderStyle=solid} val finalCentroids = centroids.iterate(numIterations) { currentCentroids => val newCentroids: DataSet[LabeledVector] = input .map(new SelectNearestCenterMapper).withBroadcastSet(currentCentroids, CENTROIDS) .map(x => (x.label, x.vector, 1L)).withForwardedFields("_1; _2") .groupBy(x => x._1) .reduce((p1, p2) => (p1._1, (p1._2.asBreeze + p2._2.asBreeze).fromBreeze, p1._3 + p2._3)).withForwardedFields("_1") .map(x => LabeledVector(x._1, x._2.asBreeze :/ x._3)).withForwardedFields("_1->id") newCentroids } {code} As far as I know, the error "could not find implicit value for parameter" can be solved by putting exact import class. I put 'import breeze.linalg.operators._' on import line as well. but it does not work. Have you ever seen this kind of error before? > Add kMeans clustering algorithm to machine learning library > ----------------------------------------------------------- > > Key: FLINK-1731 > URL: https://issues.apache.org/jira/browse/FLINK-1731 > Project: Flink > Issue Type: New Feature > Components: Machine Learning Library > Reporter: Till Rohrmann > Assignee: Peter Schrott > Labels: ML > > The Flink repository already contains a kMeans implementation but it is not > yet ported to the machine learning library. I assume that only the used data > types have to be adapted and then it can be more or less directly moved to > flink-ml. > The kMeans++ [1] and the kMeans|| [2] algorithm constitute a better > implementation because the improve the initial seeding phase to achieve near > optimal clustering. It might be worthwhile to implement kMeans||. > Resources: > [1] http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf > [2] http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf -- This message was sent by Atlassian JIRA (v6.3.4#6332)