[ https://issues.apache.org/jira/browse/FLINK-1979?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14532398#comment-14532398 ]
ASF GitHub Bot commented on FLINK-1979: --------------------------------------- GitHub user jojo19893 opened a pull request: https://github.com/apache/flink/pull/656 Lossfunctions We added Logistic Loss Functions and Hinge Loss to the Optimazation Framework. See for the implemented Functions: https://github.com/JohnLangford/vowpal_wabbit/wiki/Loss-functions Jira Issue: https://issues.apache.org/jira/browse/FLINK-1979 You can merge this pull request into a Git repository by running: $ git pull https://github.com/jojo19893/flink master Alternatively you can review and apply these changes as the patch at: https://github.com/apache/flink/pull/656.patch To close this pull request, make a commit to your master/trunk branch with (at least) the following in the commit message: This closes #656 ---- commit 4431e1d2ed0ebfd230ae997bcbf412c965108034 Author: Theodore Vasiloudis <t...@sics.se> Date: 2015-04-21T08:59:34Z [FLINK-1807] [ml] Adds optimization framework and SGD solver. Added Stochastic Gradient Descent initial version and some tests. Added L1, L2 regularization. Added tests for regularization, fixed parameter setting. commit e51c63583514d51f727816944df01a0e6e8461eb Author: Theodore Vasiloudis <t...@sics.se> Date: 2015-04-27T14:16:18Z Added documentation, some minor fixes. commit 4a2235c4606b03fbee8854dd02dea7faa27ace9b Author: Theodore Vasiloudis <t...@sics.se> Date: 2015-04-28T13:43:17Z Added license to doc file commit afb281c0273af944fabdca96d833d95a094e7944 Author: Theodore Vasiloudis <t...@sics.se> Date: 2015-04-29T12:36:12Z Style fixes commit 9a810b70f55fc62164d873678437f995b44f4d8e Author: Theodore Vasiloudis <t...@sics.se> Date: 2015-05-04T08:50:49Z Refactored the way regularization is applied. We are now using pattern matching to determine if a regularization type is differentiable or not. If it is (L2) we apply the regularization at the gradient calculation step, before taking the update step. If it isn't (L1) the regularization is applied after the gradient descent step has been taken. This sets us up nicely for the L-BFGS algorithm, where we can calculate the regularized loss and gradient required if we are using L2. commit 9c71e1a18f4011fdaec53945308c230ab6a97752 Author: Theodore Vasiloudis <t...@sics.se> Date: 2015-05-05T08:50:52Z Added option to provide UDF for the prediction function, moved SGD regularization to update step. Incorporated the rest of Till's comments. commit 3a0ef8588290c17e83bc0ffa86f1e54d10bf39e0 Author: Theodore Vasiloudis <t...@sics.se> Date: 2015-05-05T12:16:50Z Style hotfix commit 8314594d547557886630f3076c8f0a72bb478fac Author: Theodore Vasiloudis <t...@sics.se> Date: 2015-05-05T12:35:53Z Regularization test check fix commit b8ec680d7833669e19f46c6c69f29b76b82d18f5 Author: Theodore Vasiloudis <t...@sics.se> Date: 2015-05-06T14:34:08Z Added prediction function class to alow non-linear optimization in the future. Small refactoring to allow calculation of regularized loss separatly from regularized gradient. commit 63115fbeff237642e1be87f143cb5042a4aeeff7 Author: Johannes Günther <jguenth1> Date: 2015-05-07T09:46:24Z Implemented Hinge Loss commit aca48e33b4cb9c90006a77caddc5fa8f8c057217 Author: mguldner <mathieuguldner....@gmail.com> Date: 2015-05-07T09:49:12Z Add LogisticLoss Function ---- > Implement Loss Functions > ------------------------ > > Key: FLINK-1979 > URL: https://issues.apache.org/jira/browse/FLINK-1979 > Project: Flink > Issue Type: Improvement > Components: Machine Learning Library > Reporter: Johannes Günther > Assignee: Johannes Günther > Priority: Minor > Labels: ML > > For convex optimization problems, optimizer methods like SGD rely on a > pluggable implementation of a loss function and its first derivative. -- This message was sent by Atlassian JIRA (v6.3.4#6332)