Hi,

the key theorem here is MATRIX_VECTOR_MUL_COMPONENT.

Here is a proof of your statement:

let MATRIXTWO_MUL_COMPONENT = prove
 (`!A:real^2^2 x:real^2.
     (A**x)$1 = A$1$1 * x$1 + A$1$2 * x$2 /\
     (A**x)$2 = A$2$1 * x$1 + A$2$2 * x$2`,
  SIMP_TAC[MATRIX_VECTOR_MUL_COMPONENT;
           DIMINDEX_2; LE_REFL; ARITH_RULE `1 <= 2`] THEN
  REWRITE_TAC[DOT_2]);;

Hope it helps,
Marco


2018-01-14 8:11 GMT+01:00 Michael Beeson <profbee...@gmail.com>:

> I've been reading the treatment of matrices in vectors.ml.   I only need
> two by two matrices for now.    I don't find a procedure MATRIX_ARITH
> analogous to VECTOR_ARITH or REAL_ARITH.  Is there anything like that?
> Here's a sample I would like to use it on.
>
> let MATRIXTWO_MUL_COMPONENT = prove
> ( `!A:real^2^2 x:real^2.
>   (A**x)$1 = A$1$1 * x$1 + A$1$2 * x$2 /\
>   (A**x)$2 = A$2$1 * x$1 + A$2$2 * x$2`,
>
>       ....  I don't know how to prove it.  Can anyone help?
> BTW,  I am very thankful to all those who have helped me on this list so
> far.
>
> Michael Beeson
>
> ------------------------------------------------------------
> ------------------
> Check out the vibrant tech community on one of the world's most
> engaging tech sites, Slashdot.org! http://sdm.link/slashdot
> _______________________________________________
> hol-info mailing list
> hol-info@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/hol-info
>
>
------------------------------------------------------------------------------
Check out the vibrant tech community on one of the world's most
engaging tech sites, Slashdot.org! http://sdm.link/slashdot
_______________________________________________
hol-info mailing list
hol-info@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/hol-info

Reply via email to