Hi,

In listTheory there's a concept called "LRC":

(* ----------------------------------------------------------------------
    LRC
      Where NRC has the number of steps in a transitive path,
      LRC has a list of the elements in the path (excluding the rightmost)
   ---------------------------------------------------------------------- *)

val LRC_def = Define`
  (LRC R [] x y = (x = y)) /\
  (LRC R (h::t) x y =
   (x = h) /\ ?z. R x z /\ LRC R t z y)`;

But I think a more useful similar concept should be a Reflexive Transitive
Closure which is able to remember all the transition labels in a relation R
(of type 'a -> 'b -> 'a -> bool), that is:

val LRTC_DEF = new_definition ("LRTC_DEF",
  ``LRTC (R :'a -> 'b -> 'a -> bool) a l b =
      !P. (!x. P x [] x) /\
          (!x h y t z. R x h y /\ P y t z ==> P x (h :: t) z) ==> P a l
b``);

For example, if we have a relation R and things like P --a--> Q, Q --b-->
R,  the resulting closure (LRTC R) can be used to describe P --[a;b]--> R.

Following a similar path with RTC in relationTheory, I can prove the
following basic theorems:

   [LRTC0_NO_TRANS]  Theorem

      |- ∀R x y. LRTC R x [] y ⇔ (x = y)

   [LRTC_CASES1]  Theorem

      |- ∀R x l y.
           LRTC R x l y ⇔
           if NULL l then x = y else ∃u. R x (HD l) u ∧ LRTC R u (TL l) y

   [LRTC_CASES2]  Theorem

      |- ∀R x l y.
           LRTC R x l y ⇔
           if NULL l then x = y
           else ∃u. LRTC R x (FRONT l) u ∧ R u (LAST l) y

   [LRTC_CASES_LRTC_TWICE]  Theorem

      |- ∀R x l y.
           LRTC R x l y ⇔
           ∃u l1 l2. LRTC R x l1 u ∧ LRTC R u l2 y ∧ (l = l1 ⧺ l2)

   [LRTC_INDUCT]  Theorem

      |- ∀R P.
           (∀x. P x [] x) ∧
           (∀x h y t z. R x h y ∧ P y t z ⇒ P x (h::t) z) ⇒
           ∀x l y. LRTC R x l y ⇒ P x l y

   [LRTC_LRTC]  Theorem

      |- ∀R x m y. LRTC R x m y ⇒ ∀n z. LRTC R y n z ⇒ LRTC R x (m ⧺ n) z

   [LRTC_REFL]  Theorem

      |- ∀R. LRTC R x [] x

   [LRTC_RULES]  Theorem

      |- ∀R.
           (∀x. LRTC R x [] x) ∧
           ∀x h y t z. R x h y ∧ LRTC R y t z ⇒ LRTC R x (h::t) z

   [LRTC_SINGLE]  Theorem

      |- ∀R x t y. R x t y ⇒ LRTC R x [t] y

   [LRTC_STRONG_INDUCT]  Theorem

      |- ∀R P.
           (∀x. P x [] x) ∧
           (∀x h y t z. R x h y ∧ LRTC R y t z ∧ P y t z ⇒ P x (h::t) z) ⇒
           ∀x l y. LRTC R x l y ⇒ P x l y

   [LRTC_TRANS]  Theorem

      |- ∀R x m y n z. LRTC R x m y ∧ LRTC R y n z ⇒ LRTC R x (m ⧺ n) z

Is this something general enough for putting into, say, rich_listTheory?
(or has anyone already done a similar development?)

Regards,

-- 
Chun Tian (binghe)
University of Bologna (Italy)
------------------------------------------------------------------------------
Check out the vibrant tech community on one of the world's most
engaging tech sites, Slashdot.org! http://sdm.link/slashdot
_______________________________________________
hol-info mailing list
hol-info@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/hol-info

Reply via email to