The x and y should be universally quantified in Ramana's suggestion: relations A = { R | !x y. R x y ==> x IN A /\ y IN A }
Michael > On 21 Nov 2015, at 01:46, Ramana Kumar <ram...@member.fsf.org> wrote: > > maybe this? > val relns_def = Define`relns A = { R | R x y ==> x IN A /\ y IN A }` > > On 20 November 2015 at 14:29, Muhammad Nadeem Iqbal > <muhammadnadeemiq...@uoslahore.edu.pk> wrote: >> Let me rephrase my problem: >> >> I have a set A and I want the definition of set of binary relations between >> A and A in HOL. >> >> Regards, >> Nadeem >> >> On Thu, Nov 19, 2015 at 4:21 PM, Yong Kiam <tanyongk...@gmail.com> wrote: >>> >>> Or you can type annotate them: >>> >>> Define`numeq (x:num) y <=> x = y` >>> >>> which gives numeq with type num -> num -> bool >>> >>> On Thu, Nov 19, 2015 at 7:14 PM, Ramana Kumar <ram...@member.fsf.org> >>> wrote: >>>> >>>> How about this? >>>> Define`issucsuc x y <=> x < y /\ (y - 2 = x)`; >>>> >>>> On 19 November 2015 at 10:31, Muhammad Nadeem Iqbal >>>> <muhammadnadeemiq...@uoslahore.edu.pk> wrote: >>>>> in your first example, you have specified two constants to x and y. >>>>> Mine is >>>>> a bit different case. I want the one in which there should not be such >>>>> specification. >>>>> >>>>> On Wed, Nov 18, 2015 at 10:28 PM, Ramana Kumar <ram...@member.fsf.org> >>>>> wrote: >>>>>> >>>>>> Which binary relation? What do you mean? >>>>>> >>>>>> Here's a binary relation that relates natural numbers 1 and 2: >>>>>> val a_binary_relation_def = Define`a_binary_relation x y <=> (x = 1) >>>>>> /\ (y >>>>>> = 2)`; >>>>>> >>>>>> Here's a binary relation that relates two Booleans iff exactly one of >>>>>> them >>>>>> is true: >>>>>> val another_binary_relation_def = Define` >>>>>> (another_binary_relation T T = F) /\ >>>>>> (another_binary_relation T F = T) /\ >>>>>> (another_binary_relation F T = T) /\ >>>>>> (another_binary_relation F F = F)`; >>>>>> >>>>>> On 18 November 2015 at 17:01, Muhammad Nadeem Iqbal >>>>>> <muhammadnadeemiq...@uoslahore.edu.pk> wrote: >>>>>>> >>>>>>> I have a query that how can we define a binary relation in HOL with a >>>>>>> specified type? >>>>>>> >>>>>>> >>>>>>> >>>>>>> >>>>>>> >>>>>>> ------------------------------------------------------------------------------ >>>>>>> >>>>>>> _______________________________________________ >>>>>>> hol-info mailing list >>>>>>> hol-info@lists.sourceforge.net >>>>>>> https://lists.sourceforge.net/lists/listinfo/hol-info >>>>>>> >>>>>> >>>>> >>>>> >>>>> >>>>> ------------------------------------------------------------------------------ >>>>> >>>>> _______________________________________________ >>>>> hol-info mailing list >>>>> hol-info@lists.sourceforge.net >>>>> https://lists.sourceforge.net/lists/listinfo/hol-info >>>>> >>>> >>>> >>>> ------------------------------------------------------------------------------ >>>> _______________________________________________ >>>> hol-info mailing list >>>> hol-info@lists.sourceforge.net >>>> https://lists.sourceforge.net/lists/listinfo/hol-info >>> >>> >> > > ------------------------------------------------------------------------------ > _______________________________________________ > hol-info mailing list > hol-info@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/hol-info ________________________________ The information in this e-mail may be confidential and subject to legal professional privilege and/or copyright. National ICT Australia Limited accepts no liability for any damage caused by this email or its attachments. ------------------------------------------------------------------------------ _______________________________________________ hol-info mailing list hol-info@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/hol-info