Hi Ricardo, On mer., 08 mai 2024 at 12:11, Ricardo Wurmus <rek...@elephly.net> wrote:
> This appears to be a common problem, but we don't know why. It's > probably related to the bazel-build-system. You'll get substitutes only > if you use `--no-grafts'. Ah, weird… I miss how the build system could impact the content-address. Another story. :-) >> Then I get this: >> >> --8<---------------cut here---------------start------------->8--- >> $ guix time-machine -C channels.scm -- shell -C r r-keras -C >> python-minimal r-reticulate tensorflow@2.13.1 > > You need python-tensorflow (also from guix-science), not just the > tensorflow library. Cool! It just works! Thank you. Cheers, simon --8<---------------cut here---------------start------------->8--- $ guix time-machine -C channels.scm \ -- shell -C r r-keras -C python-minimal r-reticulate tensorflow@2.13.1 python-tensorflow [env]$ R R version 4.3.3 (2024-02-29) -- "Angel Food Cake" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(keras) > model <- keras_model_sequential() Would you like to create a default python environment for the reticulate package? (Yes/no/cancel) no 2024-05-08 12:30:26.110266: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. 2024-05-08 12:30:26.137568: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: SSE3 SSE4.1 SSE4.2 AVX AVX2 AVX512F AVX512_VNNI AVX512_BF16 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:root:Limited tf.compat.v2.summary API due to missing TensorBoard installation. WARNING:root:Limited tf.compat.v2.summary API due to missing TensorBoard installation. WARNING:root:Limited tf.compat.v2.summary API due to missing TensorBoard installation. WARNING:root:Limited tf.summary API due to missing TensorBoard installation. WARNING:root:Limited tf.compat.v2.summary API due to missing TensorBoard installation. WARNING:root:Limited tf.compat.v2.summary API due to missing TensorBoard installation. WARNING:root:Limited tf.compat.v2.summary API due to missing TensorBoard installation. > model %>% # Adds a densely-connected layer with 64 units to the model: layer_dense(units = 64, activation = 'relu') %>% # Add another: layer_dense(units = 64, activation = 'relu') %>% # Add a softmax layer with 10 output units: layer_dense(units = 10, activation = 'softmax') + + + + + + + + + > > model %>% compile( optimizer = 'adam', loss = 'categorical_crossentropy', metrics = list('accuracy') ) + + + + > > data <- matrix(rnorm(1000 * 32), nrow = 1000, ncol = 32) labels <- matrix(rnorm(1000 * 10), nrow = 1000, ncol = 10) model %>% fit( data, labels, epochs = 10, batch_size = 32 ) > > > + + + + + Epoch 1/10 32/32 [==============================] - 0s 837us/step - loss: -0.2669 - accuracy: 0.1060 32/32 [==============================] - 0s 951us/step - loss: -0.2669 - accuracy: 0.1060 Epoch 2/10 32/32 [==============================] - 0s 743us/step - loss: -0.4499 - accuracy: 0.1120 32/32 [==============================] - 0s 1ms/step - loss: -0.4499 - accuracy: 0.1120 Epoch 3/10 32/32 [==============================] - 0s 682us/step - loss: -0.6262 - accuracy: 0.1050 32/32 [==============================] - 0s 736us/step - loss: -0.6262 - accuracy: 0.1050 Epoch 4/10 32/32 [==============================] - 0s 643us/step - loss: -0.8110 - accuracy: 0.1150 32/32 [==============================] - 0s 695us/step - loss: -0.8110 - accuracy: 0.1150 Epoch 5/10 32/32 [==============================] - 0s 614us/step - loss: -1.0271 - accuracy: 0.1270 32/32 [==============================] - 0s 659us/step - loss: -1.0271 - accuracy: 0.1270 Epoch 6/10 32/32 [==============================] - 0s 535us/step - loss: -1.1987 - accuracy: 0.1480 32/32 [==============================] - 0s 599us/step - loss: -1.1987 - accuracy: 0.1480 Epoch 7/10 32/32 [==============================] - 0s 637us/step - loss: -1.4685 - accuracy: 0.1230 32/32 [==============================] - 0s 739us/step - loss: -1.4685 - accuracy: 0.1230 Epoch 8/10 32/32 [==============================] - 0s 608us/step - loss: -1.7238 - accuracy: 0.1380 32/32 [==============================] - 0s 654us/step - loss: -1.7238 - accuracy: 0.1380 Epoch 9/10 32/32 [==============================] - 0s 552us/step - loss: -1.9540 - accuracy: 0.1270 32/32 [==============================] - 0s 592us/step - loss: -1.9540 - accuracy: 0.1270 Epoch 10/10 32/32 [==============================] - 0s 705us/step - loss: -2.2367 - accuracy: 0.1160 32/32 [==============================] - 0s 773us/step - loss: -2.2367 - accuracy: 0.1160 > --8<---------------cut here---------------end--------------->8---