Integrating npm into the Guix ecosystem

Jelle Licht, jlicht@fsfe.org

21-03-2016

1 Overview

This project will allow Guix hackers to more easily package software that is
distributed through the Node Package Manager (npm), as well as allowing
Node developers on Guix to make use of the reproducible builds guarantee
of Guix.

After completing this project, it should be possible to easily make use
of the less-problematic packages in the npm registry on the Guix Software
Distribution.

2 Project structure

Depending on findings in the early stages of the project, I foresee the follow-
ing distinct parts:

1. Extend Guix so it can ’simulate’ the dependency graph generation of
both the old and new npm ¥.

2. Extend guix with an algorithm that matches npm’s package.json flex-
ible version specification to a specific version.

3. Add a guix import backend for the npm registry
4. Package npm modules in guix

5. Interface

Right now, dependency resolution in npm is as stateful as can be, with
even the installation order ! making a difference for where npm expects to

! https://docs.npmjs.com/how-npm-works/npm3

https://docs.npmjs.com/how-npm-works/npm3

find a certain dependency. As two different dependency resolution mecha-
nism are in use, of which especially the newer one is problematic because of
its habit of propagating dependencies upwards in the folder structure, both
have to be supported by a guix module.

npm uses SemanticVersioning range patterns 2 to declare dependencies
between packages. A problem with this approach is that the same package
declaration can lead to an entirely different dependency graph, which defeats
the purpose of having a system with a focus on reproducible builds. If npm
packages are to be used, these version numbers need to be locked down to a
specific version, corresponding to the version that npm would install if left
to its devices. A potential problem is that the entire dependency graph has
to be known ahead of time in order to pinpoint a ’correct’ version of the
dependency. A consistent ordering for ’installing’ dependencies also has to
be decided upon.

After the dependency resolution has been worked out, it should be pos-
sible to create a guix import backend to leverage the code that has been
produced up till now to allow the packaging of npm modules. The last part
of the project essentially serves as a starting point for packaging up useful
npm packages.

A stretch goal for the summer would be to create a guix build system for
a subset of npm packages, such as gulp.

3 Planning

As T am currently a novice with regards to the internals of guix and the guile
programming language, up to the start of the actual project I will mostly be
reading up and hacking on guix. As such, the planning becomes:

April 22 - May 22:

e Getting to know Guix(SD)
e Package programs using the guix import module
e An informal specification of the npm dependency resolution mechanism

e Getting the know the guix community and what everyone is working
on

e Getting familiar with the contributing work flows

2 http://developer.telerik.com/featured/mystical-magical-semver-ranges-used-npm-bower/

http://developer.telerik.com/featured/mystical-magical-semver-ranges-used-npm-bower/

May 23 - Jun 5:

e Formal specification to allow guix to simulate npm dependency reso-
lution (1)

Jun 6 - Jun 19:

e npm Version pinning should be working (2)

e start working on the guix import backend

Jun 20 - Jul 3:

e Guix import backend should be finished by now (3)
e Start testing npm packages

Jul 4 - Jul 10:

e Holidays!

Jul 11 - Aug 7:

e Solve any problems and corner cases with building and installing npm
packages (4)

Aug 8 - Aug 23:

o [f life goes a planned, Get all contributions ready to be merged back
in the main Guix codebase.

4 About me

My name is Jelle Licht, and I am currently studying Data Science at the
University of Technology Delft. I finished my BSc in Computer Science in
2015, at the University of Technology Delft as well. Somewhere in the second
semester of my studies, my roommate was using Vi in front of me, and since
then I've been falling into the rabbit hole that is GNU /Linux, free software
and the 'open source’ community. Somewhere along the line I became a
huge fan of Clojure, and for a short while was a member of the very much
unofficial Lisp Community Delft.

I have been a small-time contributor to some free software projects on
github, as well as having a day job to make ends meet using mostly Node.
My online handles include 'wordempire’, as I am quite fond of reading, and

‘jlicht’. For the past month, I have been lurking on-and-off again in the
#guix irc channel, as well as reading up on some of the motivations behind
reproducible research and reproducible builds.

Besides one week for visiting family and general holidays, this project
would be my full time focus during the summer.

