Hi all! I just wrote a simple gradient regressor in Go. Gradient boosting is a statistical learning method. Given a number of samples it returns a function that fits the those data and can be used to predict previously unseen data. The usage is simple, here's an example:
trainSamples := []sample.Sample{ sample.DefaultSample{Xs: map[string]float64{"x": 0}, Y: 10}, sample.DefaultSample{Xs: map[string]float64{"x": 1}, Y: 10}, sample.DefaultSample{Xs: map[string]float64{"x": 2}, Y: 20}, sample.DefaultSample{Xs: map[string]float64{"x": 3}, Y: 20}, sample.DefaultSample{Xs: map[string]float64{"x": 4}, Y: 5}, sample.DefaultSample{Xs: map[string]float64{"x": 5}, Y: 5}, } predictFunc := gradboostreg.Learn(trainSamples, 0.5, 10) testSamples := []sample.Sample{ sample.DefaultSample{Xs: map[string]float64{"x": 0.0}, Y: 10}, sample.DefaultSample{Xs: map[string]float64{"x": 0.5}, Y: 10}, sample.DefaultSample{Xs: map[string]float64{"x": 2.5}, Y: 20}, sample.DefaultSample{Xs: map[string]float64{"x": 2.0}, Y: 20}, sample.DefaultSample{Xs: map[string]float64{"x": 4.5}, Y: 5}, } for i := range testSamples { predicted, actual := predictFunc(testSamples[i]), testSamples[i].GetY() fmt.Printf("predicted=%.1f actual=%.1f\n", predicted, actual) } // Output: // predicted=10.0 actual=10.0 // predicted=10.0 actual=10.0 // predicted=20.0 actual=20.0 // predicted=20.0 actual=20.0 // predicted=5.0 actual=5.0 Here's the source: https://github.com/siadat/gradboostreg Let me know what you think! :) Thanks, Sina -- You received this message because you are subscribed to the Google Groups "golang-nuts" group. To unsubscribe from this group and stop receiving emails from it, send an email to golang-nuts+unsubscr...@googlegroups.com. For more options, visit https://groups.google.com/d/optout.