On 8/29/12 11:11 AM, jesmin jahan wrote:
Thanks Mark for your reply.

For the time being, I admit your claim that I am comparing apple with orange.
So, to investigate more, I run the simulation without any modification
in parameter fields and force field I am using. My test data is CMV
virus shell.
I am using the following commands.

pdb2gmx -f 1F15-full.pdb -ter -ignh -ff amber99 -water none
grompp -f mdr.mdp -c conf.gro -p topol.top -o imd.tpr
OMP_NUM_THREADS=12 mdrun -nt 16 -s imd.tpr


The log file looks like this:
  :-)  G  R  O  M  A  C  S  (-:

                    GROningen MAchine for Chemical Simulation

                    :-)  VERSION 4.6-dev-20120820-87e5bcf  (-:

         Written by Emile Apol, Rossen Apostolov, Herman J.C. Berendsen,
       Aldert van Buuren, Pär Bjelkmar, Rudi van Drunen, Anton Feenstra,
         Gerrit Groenhof, Peter Kasson, Per Larsson, Pieter Meulenhoff,
            Teemu Murtola, Szilard Pall, Sander Pronk, Roland Schulz,
                 Michael Shirts, Alfons Sijbers, Peter Tieleman,

                Berk Hess, David van der Spoel, and Erik Lindahl.

        Copyright (c) 1991-2000, University of Groningen, The Netherlands.
             Copyright (c) 2001-2010, The GROMACS development team at
         Uppsala University & The Royal Institute of Technology, Sweden.
             check out http://www.gromacs.org for more information.

          This program is free software; you can redistribute it and/or
           modify it under the terms of the GNU General Public License
          as published by the Free Software Foundation; either version 2
              of the License, or (at your option) any later version.

                               :-)  mdrun_mpi  (-:


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 435-447
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
Berendsen
GROMACS: Fast, Flexible and Free
J. Comp. Chem. 26 (2005) pp. 1701-1719
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
E. Lindahl and B. Hess and D. van der Spoel
GROMACS 3.0: A package for molecular simulation and trajectory analysis
J. Mol. Mod. 7 (2001) pp. 306-317
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
GROMACS: A message-passing parallel molecular dynamics implementation
Comp. Phys. Comm. 91 (1995) pp. 43-56
-------- -------- --- Thank You --- -------- --------

Input Parameters:
    integrator           = md
    nsteps               = 0
    init-step            = 0
    ns-type              = Grid
    nstlist              = 10
    ndelta               = 2
    nstcomm              = 10
    comm-mode            = Linear
    nstlog               = 1000
    nstxout              = 0
    nstvout              = 0
    nstfout              = 0
    nstcalcenergy        = 10
    nstenergy            = 100
    nstxtcout            = 0
    init-t               = 0
    delta-t              = 0.001
    xtcprec              = 1000
    nkx                  = 0
    nky                  = 0
    nkz                  = 0
    pme-order            = 4
    ewald-rtol           = 1e-05
    ewald-geometry       = 0
    epsilon-surface      = 0
    optimize-fft         = FALSE
    ePBC                 = no
    bPeriodicMols        = FALSE
    bContinuation        = FALSE
    bShakeSOR            = FALSE
    etc                  = No
    bPrintNHChains       = FALSE
    nsttcouple           = -1
    epc                  = No
    epctype              = Isotropic
    nstpcouple           = -1
    tau-p                = 1
    ref-p (3x3):
       ref-p[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
       ref-p[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
       ref-p[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
    compress (3x3):
       compress[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
       compress[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
       compress[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
    refcoord-scaling     = No
    posres-com (3):
       posres-com[0]= 0.00000e+00
       posres-com[1]= 0.00000e+00
       posres-com[2]= 0.00000e+00
    posres-comB (3):
       posres-comB[0]= 0.00000e+00
       posres-comB[1]= 0.00000e+00
       posres-comB[2]= 0.00000e+00
    rlist                = 1
    rlistlong            = 1
    rtpi                 = 0.05
    coulombtype          = Cut-off
    rcoulomb-switch      = 0
    rcoulomb             = 1
    vdwtype              = Cut-off
    rvdw-switch          = 0
    rvdw                 = 1
    epsilon-r            = 1
    epsilon-rf           = inf
    tabext               = 1
    implicit-solvent     = GBSA
    gb-algorithm         = HCT
    gb-epsilon-solvent   = 80
    nstgbradii           = 1
    rgbradii             = 1
    gb-saltconc          = 0
    gb-obc-alpha         = 1
    gb-obc-beta          = 0.8
    gb-obc-gamma         = 4.85
    gb-dielectric-offset = 0.009
    sa-algorithm         = None
    sa-surface-tension   = 2.25936
    DispCorr             = No
    bSimTemp             = FALSE
    free-energy          = no
    nwall                = 0
    wall-type            = 9-3
    wall-atomtype[0]     = -1
    wall-atomtype[1]     = -1
    wall-density[0]      = 0
    wall-density[1]      = 0
    wall-ewald-zfac      = 3
    pull                 = no
    rotation             = FALSE
    disre                = No
    disre-weighting      = Conservative
    disre-mixed          = FALSE
    dr-fc                = 1000
    dr-tau               = 0
    nstdisreout          = 100
    orires-fc            = 0
    orires-tau           = 0
    nstorireout          = 100
    dihre-fc             = 0
    em-stepsize          = 0.01
    em-tol               = 10
    niter                = 20
    fc-stepsize          = 0
    nstcgsteep           = 1000
    nbfgscorr            = 10
    ConstAlg             = Lincs
    shake-tol            = 0.0001
    lincs-order          = 4
    lincs-warnangle      = 30
    lincs-iter           = 1
    bd-fric              = 0
    ld-seed              = 1993
    cos-accel            = 0
    deform (3x3):
       deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
       deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
       deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
    adress               = FALSE
    userint1             = 0
    userint2             = 0
    userint3             = 0
    userint4             = 0
    userreal1            = 0
    userreal2            = 0
    userreal3            = 0
    userreal4            = 0
grpopts:
    nrdf:        9534
    ref-t:           0
    tau-t:           0
anneal:          No
ann-npoints:           0
    acc:                   0           0           0
    nfreeze:           N           N           N
    energygrp-flags[  0]: 0
    efield-x:
       n = 0
    efield-xt:
       n = 0
    efield-y:
       n = 0
    efield-yt:
       n = 0
    efield-z:
       n = 0
    efield-zt:
       n = 0
    bQMMM                = FALSE
    QMconstraints        = 0
    QMMMscheme           = 0
    scalefactor          = 1
qm-opts:
    ngQM                 = 0

Initializing Domain Decomposition on 16 nodes
Dynamic load balancing: auto
Will sort the charge groups at every domain (re)decomposition
Minimum cell size due to bonded interactions: 0.000 nm
Scaling the initial minimum size with 1/0.8 (option -dds) = 1.25
Optimizing the DD grid for 16 cells with a minimum initial size of 0.000 nm
Domain decomposition grid 4 x 4 x 1, separate PME nodes 0
Domain decomposition nodeid 0, coordinates 0 0 0

Detecting CPU-specific acceleration. Present hardware specification:
Vendor: GenuineIntel
Brand:  Intel(R) Xeon(R) CPU           X5680  @ 3.33GHz
Family:  6  Model: 44  Stepping:  2
Features: htt sse2 sse4.1 aes rdtscp
Acceleration most likely to fit this hardware: SSE4.1
Acceleration selected at Gromacs compile time: SSE4.1

Table routines are used for coulomb: FALSE
Table routines are used for vdw:     FALSE
Cut-off's:   NS: 1   Coulomb: 1   LJ: 1
System total charge: 6.000
Configuring nonbonded kernels...
Configuring standard C nonbonded kernels...



Linking all bonded interactions to atoms

The initial number of communication pulses is: X 2 Y 2
The initial domain decomposition cell size is: X 0.79 nm Y 0.89 nm

The maximum allowed distance for charge groups involved in interactions is:
                  non-bonded interactions           1.000 nm
(the following are initial values, they could change due to box deformation)
             two-body bonded interactions  (-rdd)   1.000 nm
           multi-body bonded interactions  (-rdd)   0.794 nm

When dynamic load balancing gets turned on, these settings will change to:
The maximum number of communication pulses is: X 2 Y 2
The minimum size for domain decomposition cells is 0.500 nm
The requested allowed shrink of DD cells (option -dds) is: 0.80
The allowed shrink of domain decomposition cells is: X 0.63 Y 0.56
The maximum allowed distance for charge groups involved in interactions is:
                  non-bonded interactions           1.000 nm
             two-body bonded interactions  (-rdd)   1.000 nm
           multi-body bonded interactions  (-rdd)   0.500 nm


Making 2D domain decomposition grid 4 x 4 x 1, home cell index 0 0 0

Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
   0:  rest
There are: 3179 Atoms
Charge group distribution at step 0: 84 180 252 196 237 210 255 157
254 197 266 176 186 104 224 201
Grid: 4 x 4 x 4 cells
Initial temperature: 0 K

Started mdrun on node 0 Wed Aug 29 02:32:21 2012

            Step           Time         Lambda
               0        0.00000        0.00000

    Energies (kJ/mol)
GB Polarization        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.
    -1.65116e+04    5.74908e+08   -2.37699e+05    5.74654e+08    6.36009e+11
    Total Energy    Temperature Pressure (bar)
     6.36584e+11    1.60465e+10    0.00000e+00

        <======  ###############  ==>
        <====  A V E R A G E S  ====>
        <==  ###############  ======>

        Statistics over 1 steps using 1 frames

    Energies (kJ/mol)
GB Polarization        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.
    -1.65116e+04    5.74908e+08   -2.37699e+05    5.74654e+08    6.36009e+11
    Total Energy    Temperature Pressure (bar)
     6.36584e+11    1.60465e+10    0.00000e+00

    Total Virial (kJ/mol)
    -1.13687e+09    1.14300e+07   -1.23884e+07
     1.14273e+07   -1.15125e+09   -5.31658e+06
    -1.23830e+07   -5.31326e+06   -1.16512e+09

    Pressure (bar)
     0.00000e+00    0.00000e+00    0.00000e+00
     0.00000e+00    0.00000e+00    0.00000e+00
     0.00000e+00    0.00000e+00    0.00000e+00

    Total Dipole (D)
     1.35524e+03   -4.39059e+01    2.16985e+03


        M E G A - F L O P S   A C C O U N T I N G

    RF=Reaction-Field  FE=Free Energy  SCFE=Soft-Core/Free Energy
    T=Tabulated        W3=SPC/TIP3p    W4=TIP4p (single or pairs)
    NF=No Forces

  Computing:                               M-Number         M-Flops  % Flops
-----------------------------------------------------------------------------
  Generalized Born Coulomb                 0.006162           0.296     0.2
  GB Coulomb + LJ                          0.446368          27.228    19.8
  Outer nonbonded loop                     0.015554           0.156     0.1
  Born radii (HCT/OBC)                     0.452530          82.813    60.3
  Born force chain rule                    0.452530           6.788     4.9
  NS-Pairs                                 0.940291          19.746    14.4
  Reset In Box                             0.003179           0.010     0.0
  CG-CoM                                   0.006358           0.019     0.0
  Virial                                   0.003899           0.070     0.1
  Stop-CM                                  0.006358           0.064     0.0
  Calc-Ekin                                0.006358           0.172     0.1
-----------------------------------------------------------------------------
  Total                                                     137.361   100.0
-----------------------------------------------------------------------------


     D O M A I N   D E C O M P O S I T I O N   S T A T I S T I C S

  av. #atoms communicated per step for force:  2 x 7369.0


      R E A L   C Y C L E   A N D   T I M E   A C C O U N T I N G

  Computing:         Nodes     Number     G-Cycles    Seconds     %
-----------------------------------------------------------------------
  Domain decomp.        16          1        0.210        0.1    11.4
  Comm. coord.          16          1        0.006        0.0     0.3
  Neighbor search       16          1        0.118        0.1     6.4
  Force                 16          1        1.319        0.8    71.4
  Wait + Comm. F        16          1        0.016        0.0     0.9
  Update                16          1        0.003        0.0     0.2
  Comm. energies        16          1        0.093        0.1     5.0
  Rest                  16                   0.082        0.1     4.4
-----------------------------------------------------------------------
  Total                 16                   1.847        1.1   100.0
-----------------------------------------------------------------------

NOTE: 5 % of the run time was spent communicating energies,
       you might want to use the -gcom option of mdrun


        Parallel run - timing based on wallclock.

                NODE (s)   Real (s)      (%)
        Time:      0.036      0.036    100.0
                (Mnbf/s)   (GFlops)   (ns/day)  (hour/ns)
Performance:     12.702      3.856      2.425      9.896
Finished mdrun on node 0 Wed Aug 29 02:32:21 2012



The GB- energy value reported is half of that reported by Amber 11 and
Octree based Molecular dynamic package.

Although I guess the difference can be due to the difference in
algorithms they are using, but there could be some other reason.
If anyone knows what are the possible reasons behind this, please let
me know. May be fixing them will give me same value for all different
Molecular Dynamic Package.


I wouldn't trust the result you're getting here - the energy values and temperature (10^10, yikes!) suggest there is something very wrong with the starting configuration.

-Justin

--
========================================

Justin A. Lemkul, Ph.D.
Research Scientist
Department of Biochemistry
Virginia Tech
Blacksburg, VA
jalemkul[at]vt.edu | (540) 231-9080
http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin

========================================
--
gmx-users mailing list    gmx-users@gromacs.org
http://lists.gromacs.org/mailman/listinfo/gmx-users
* Please search the archive at 
http://www.gromacs.org/Support/Mailing_Lists/Search before posting!
* Please don't post (un)subscribe requests to the list. Use the www interface or send it to gmx-users-requ...@gromacs.org.
* Can't post? Read http://www.gromacs.org/Support/Mailing_Lists

Reply via email to