andygrove opened a new issue, #3187:
URL: https://github.com/apache/datafusion-comet/issues/3187
## What is the problem the feature request solves?
> **Note:** This issue was generated with AI assistance. The specification
details have been extracted from Spark documentation and may need verification.
Comet does not currently support the Spark `aes_encrypt` function, causing
queries using this function to fall back to Spark's JVM execution instead of
running natively on DataFusion.
The `AesEncrypt` expression provides AES (Advanced Encryption Standard)
encryption functionality in Spark SQL. It encrypts binary input data using a
specified key, encryption mode, padding scheme, initialization vector (IV), and
optional additional authenticated data (AAD). This expression is implemented as
a runtime replaceable that delegates to native implementation methods for
performance.
Supporting this expression would allow more Spark workloads to benefit from
Comet's native acceleration.
## Describe the potential solution
### Spark Specification
**Syntax:**
```sql
aes_encrypt(input, key [, mode [, padding [, iv [, aad]]]])
```
```scala
// DataFrame API
import org.apache.spark.sql.catalyst.expressions.AesEncrypt
AesEncrypt(inputExpr, keyExpr, modeExpr, paddingExpr, ivExpr, aadExpr)
```
**Arguments:**
| Argument | Type | Description |
|----------|------|-------------|
| input | BinaryType | The binary data to encrypt |
| key | BinaryType | The encryption key as binary data |
| mode | StringType | The encryption mode (defaults to "GCM") |
| padding | StringType | The padding scheme (defaults to "DEFAULT") |
| iv | BinaryType | The initialization vector (defaults to empty) |
| aad | BinaryType | Additional authenticated data for GCM mode (defaults to
empty) |
**Return Type:** Returns `BinaryType` - the encrypted data as a binary array.
**Supported Data Types:**
- **Input data**: Binary type only
- **Key**: Binary type only
- **Mode**: String type with collation support (trim collation supported)
- **Padding**: String type with collation support (trim collation supported)
- **IV**: Binary type only
- **AAD**: Binary type only
**Edge Cases:**
- **Null inputs**: Follows standard Spark null propagation - any null input
produces null output
- **Empty AAD**: When AAD parameter is omitted, defaults to empty binary
literal
- **Empty IV**: When IV parameter is omitted, defaults to empty binary
literal
- **Invalid key sizes**: Behavior depends on underlying AES implementation
in ExpressionImplUtils
- **Mode/padding combinations**: Some mode and padding combinations may not
be supported
**Examples:**
```sql
-- Basic encryption with default GCM mode
SELECT base64(aes_encrypt('Spark', 'abcdefghijklmnop12345678ABCDEFGH'));
-- Full specification with all parameters
SELECT base64(aes_encrypt(
'Spark',
'abcdefghijklmnop12345678ABCDEFGH',
'GCM',
'DEFAULT',
unhex('000000000000000000000000'),
'This is an AAD mixed into the input'
));
```
```scala
// DataFrame API usage
import org.apache.spark.sql.functions._
df.select(base64(expr("aes_encrypt(data, key, 'GCM', 'DEFAULT', iv, aad)")))
// Using expression directly
import org.apache.spark.sql.catalyst.expressions._
val encrypted = AesEncrypt(col("data").expr, col("key").expr)
```
### Implementation Approach
See the [Comet guide on adding new
expressions](https://datafusion.apache.org/comet/contributor-guide/adding_a_new_expression.html)
for detailed instructions.
1. **Scala Serde**: Add expression handler in
`spark/src/main/scala/org/apache/comet/serde/`
2. **Register**: Add to appropriate map in `QueryPlanSerde.scala`
3. **Protobuf**: Add message type in `native/proto/src/proto/expr.proto` if
needed
4. **Rust**: Implement in `native/spark-expr/src/` (check if DataFusion has
built-in support first)
## Additional context
**Difficulty:** Large
**Spark Expression Class:**
`org.apache.spark.sql.catalyst.expressions.AesEncrypt`
**Related:**
- `AesDecrypt` - corresponding decryption function
- `base64/unbase64` - commonly used for encoding encrypted binary output
- `unhex/hex` - for converting hexadecimal strings to binary data
---
*This issue was auto-generated from Spark reference documentation.*
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]