milenkovicm commented on issue #1296: URL: https://github.com/apache/datafusion-ballista/issues/1296#issuecomment-3223060640
```text ShuffleWriterExec: partitions:Some(Hash([Column { name: "i_category", index: 0 }, Column { name: "i_brand", index: 1 }, Column { name: "s_store_name", index: 2 }, Column { name: "s_company_name", index: 3 }, Column { name: "CAST(v1.rn AS Decimal128(21, 0))", index: 9 }], 16)) ProjectionExec: expr=[i_category@0 as i_category, i_brand@1 as i_brand, s_store_name@2 as s_store_name, s_company_name@3 as s_company_name, d_year@4 as d_year, d_moy@5 as d_moy, sum(store_sales.ss_sales_price)@6 as sum_sales, avg(sum(store_sales.ss_sales_price)) PARTITION BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name, date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING@8 as avg_monthly_sales, rank() PARTITION BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name] ORDER BY [date_dim.d_year ASC NULLS LAST, date_dim.d_moy ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@7 as rn, CAST(rank() PARTITION BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name] ORDER BY [date_dim.d_year ASC NULLS LAST, date_dim.d_moy ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@7 AS Decimal128(21, 0)) as CAST(v1.rn AS Decimal128(21, 0))] CoalesceBatchesExec: target_batch_size=8192 FilterExec: __common_expr_3@0 AND CASE WHEN __common_expr_3@0 THEN abs(sum(store_sales.ss_sales_price)@7 - avg(sum(store_sales.ss_sales_price)) PARTITION BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name, date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING@9) / avg(sum(store_sales.ss_sales_price)) PARTITION BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name, date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING@9 END > 0.1, projection=[i_category@1, i_brand@2, s_store_name@3, s_company_name@4, d_year@5, d_moy@6, sum(store_sales.ss_sales_price)@7, rank() PARTITION BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name] ORDER BY [date_dim.d_year ASC NULLS LAST, date_dim.d_moy ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@8, avg(sum(store_sales.ss_sales_price)) PARTITION BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name, date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING@9] ProjectionExec: expr=[avg(sum(store_sales.ss_sales_price)) PARTITION BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name, date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING@8 > 0 as __common_expr_3, i_category@0 as i_category, i_brand@1 as i_brand, s_store_name@2 as s_store_name, s_company_name@3 as s_company_name, d_year@4 as d_year, d_moy@5 as d_moy, sum(store_sales.ss_sales_price)@6 as sum(store_sales.ss_sales_price), rank() PARTITION BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name] ORDER BY [date_dim.d_year ASC NULLS LAST, date_dim.d_moy ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@7 as rank() PARTITION BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name] ORDER BY [date_dim.d_year ASC NULLS LAST, date_dim.d_moy ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, avg(sum(store_sales.ss_sales_price)) PARTITION BY [item.i_category, item.i_ brand, store.s_store_name, store.s_company_name, date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING@8 as avg(sum(store_sales.ss_sales_price)) PARTITION BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name, date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING] WindowAggExec: wdw=[avg(sum(store_sales.ss_sales_price)) PARTITION BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name, date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "avg(sum(store_sales.ss_sales_price)) PARTITION BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name, date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING", data_type: Float64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(NULL)), is_causal: false }] SortExec: expr=[i_category@0 ASC NULLS LAST, i_brand@1 ASC NULLS LAST, s_store_name@2 ASC NULLS LAST, s_company_name@3 ASC NULLS LAST], preserve_partitioning=[true] CoalesceBatchesExec: target_batch_ ``` state 10, looks like `WindowAggExec` is the one making issues -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org For additional commands, e-mail: github-h...@datafusion.apache.org