milenkovicm commented on issue #1296:
URL: 
https://github.com/apache/datafusion-ballista/issues/1296#issuecomment-3223060640

   ```text
   ShuffleWriterExec: partitions:Some(Hash([Column { name: "i_category", index: 
0 }, Column { name: "i_brand", index: 1 }, Column { name: "s_store_name", 
index: 2 }, Column { name: "s_company_name", index: 3 }, Column { name: 
"CAST(v1.rn AS Decimal128(21, 0))", index: 9 }], 16))
     ProjectionExec: expr=[i_category@0 as i_category, i_brand@1 as i_brand, 
s_store_name@2 as s_store_name, s_company_name@3 as s_company_name, d_year@4 as 
d_year, d_moy@5 as d_moy, sum(store_sales.ss_sales_price)@6 as sum_sales, 
avg(sum(store_sales.ss_sales_price)) PARTITION BY [item.i_category, 
item.i_brand, store.s_store_name, store.s_company_name, date_dim.d_year] ROWS 
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING@8 as avg_monthly_sales, 
rank() PARTITION BY [item.i_category, item.i_brand, store.s_store_name, 
store.s_company_name] ORDER BY [date_dim.d_year ASC NULLS LAST, date_dim.d_moy 
ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@7 as rn, 
CAST(rank() PARTITION BY [item.i_category, item.i_brand, store.s_store_name, 
store.s_company_name] ORDER BY [date_dim.d_year ASC NULLS LAST, date_dim.d_moy 
ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@7 AS 
Decimal128(21, 0)) as CAST(v1.rn AS Decimal128(21, 0))]
       CoalesceBatchesExec: target_batch_size=8192
         FilterExec: __common_expr_3@0 AND CASE WHEN __common_expr_3@0 THEN 
abs(sum(store_sales.ss_sales_price)@7 - avg(sum(store_sales.ss_sales_price)) 
PARTITION BY [item.i_category, item.i_brand, store.s_store_name, 
store.s_company_name, date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND 
UNBOUNDED FOLLOWING@9) / avg(sum(store_sales.ss_sales_price)) PARTITION BY 
[item.i_category, item.i_brand, store.s_store_name, store.s_company_name, 
date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING@9 END 
> 0.1, projection=[i_category@1, i_brand@2, s_store_name@3, s_company_name@4, 
d_year@5, d_moy@6, sum(store_sales.ss_sales_price)@7, rank() PARTITION BY 
[item.i_category, item.i_brand, store.s_store_name, store.s_company_name] ORDER 
BY [date_dim.d_year ASC NULLS LAST, date_dim.d_moy ASC NULLS LAST] RANGE 
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@8, 
avg(sum(store_sales.ss_sales_price)) PARTITION BY [item.i_category, 
item.i_brand, store.s_store_name, store.s_company_name,
  date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING@9]
           ProjectionExec: expr=[avg(sum(store_sales.ss_sales_price)) PARTITION 
BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name, 
date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING@8 > 0 
as __common_expr_3, i_category@0 as i_category, i_brand@1 as i_brand, 
s_store_name@2 as s_store_name, s_company_name@3 as s_company_name, d_year@4 as 
d_year, d_moy@5 as d_moy, sum(store_sales.ss_sales_price)@6 as 
sum(store_sales.ss_sales_price), rank() PARTITION BY [item.i_category, 
item.i_brand, store.s_store_name, store.s_company_name] ORDER BY 
[date_dim.d_year ASC NULLS LAST, date_dim.d_moy ASC NULLS LAST] RANGE BETWEEN 
UNBOUNDED PRECEDING AND CURRENT ROW@7 as rank() PARTITION BY [item.i_category, 
item.i_brand, store.s_store_name, store.s_company_name] ORDER BY 
[date_dim.d_year ASC NULLS LAST, date_dim.d_moy ASC NULLS LAST] RANGE BETWEEN 
UNBOUNDED PRECEDING AND CURRENT ROW, avg(sum(store_sales.ss_sales_price)) 
PARTITION BY [item.i_category, item.i_
 brand, store.s_store_name, store.s_company_name, date_dim.d_year] ROWS BETWEEN 
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING@8 as 
avg(sum(store_sales.ss_sales_price)) PARTITION BY [item.i_category, 
item.i_brand, store.s_store_name, store.s_company_name, date_dim.d_year] ROWS 
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING]
             WindowAggExec: wdw=[avg(sum(store_sales.ss_sales_price)) PARTITION 
BY [item.i_category, item.i_brand, store.s_store_name, store.s_company_name, 
date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING: 
Ok(Field { name: "avg(sum(store_sales.ss_sales_price)) PARTITION BY 
[item.i_category, item.i_brand, store.s_store_name, store.s_company_name, 
date_dim.d_year] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING", 
data_type: Float64, nullable: true, dict_id: 0, dict_is_ordered: false, 
metadata: {} }), frame: WindowFrame { units: Rows, start_bound: 
Preceding(UInt64(NULL)), end_bound: Following(UInt64(NULL)), is_causal: false }]
               SortExec: expr=[i_category@0 ASC NULLS LAST, i_brand@1 ASC NULLS 
LAST, s_store_name@2 ASC NULLS LAST, s_company_name@3 ASC NULLS LAST], 
preserve_partitioning=[true]
                 CoalesceBatchesExec: target_batch_
   ```
   state 10, looks like `WindowAggExec` is the one making issues 


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org
For additional commands, e-mail: github-h...@datafusion.apache.org

Reply via email to