I'd hoped the days of zero-precision INTEGER_CSTs were behind us after
Richard's patch to remove min amd max values from zero-width bitfields,
but a boostrap-ubsan showed otherwise. One source is in:
null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
if no_target, since the precision of the type comes from ptr_mode,
which remains the default VOIDmode. Maybe that's a bug, but setting
it to an arbitrary nonzero value would also be dangerous.
The other use is in the C/C++ void_zero_node, which is specifically
defined as a VOID_TYPE, zero-precision INTEGER_CST. This is used by the
ubsan code in some ?: tests, as well as by other places in the frontend
proper. At least the ubsan use persists until gimple.
This patch therefore restores the wide-int handling for zero precision,
for which the length must be 1 and the single HWI must be zero.
I've tried to wrap up most of the dependencies in two new functions,
wi::blocks_needed (a function version of the .cc BLOCKS_NEEDED, now also
used in the header) and wi::excess_bits, so that it'll be easier to
remove the handling again if zero precision ever goes away.
There are some remaining, easily-greppable cases that check directly
for a precision of 0 though.
The combination of this and the other patches allows boostrap-ubsan to
complete. There are a lot of extra testsuite failures compared to a
normal bootstrap, but they don't look related to wide-int.
Tested on x86_64-linux-gnu and powerpc64-linux-gnu. OK to install?
Thanks,
Richard
Index: gcc/wide-int.cc
===================================================================
--- gcc/wide-int.cc 2014-05-02 16:28:07.657847935 +0100
+++ gcc/wide-int.cc 2014-05-02 16:28:09.560842845 +0100
@@ -48,8 +48,6 @@ static const HOST_WIDE_INT zeros[WIDE_IN
#define HALF_INT_MASK (((HOST_WIDE_INT) 1 << HOST_BITS_PER_HALF_WIDE_INT) - 1)
#define BLOCK_OF(TARGET) ((TARGET) / HOST_BITS_PER_WIDE_INT)
-#define BLOCKS_NEEDED(PREC) \
- (PREC ? (((PREC) + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT) : 1)
#define SIGN_MASK(X) ((HOST_WIDE_INT) (X) < 0 ? -1 : 0)
/* Return the value a VAL[I] if I < LEN, otherwise, return 0 or -1
@@ -69,20 +67,20 @@ safe_uhwi (const HOST_WIDE_INT *val, uns
static unsigned int
canonize (HOST_WIDE_INT *val, unsigned int len, unsigned int precision)
{
- unsigned int blocks_needed = BLOCKS_NEEDED (precision);
+ unsigned int blocks_needed = wi::blocks_needed (precision);
HOST_WIDE_INT top;
int i;
if (len > blocks_needed)
len = blocks_needed;
+ if (wi::excess_bits (len, precision) > 0)
+ val[len - 1] = sext_hwi (val[len - 1], precision % HOST_BITS_PER_WIDE_INT);
if (len == 1)
return len;
top = val[len - 1];
- if (len * HOST_BITS_PER_WIDE_INT > precision)
- val[len - 1] = top = sext_hwi (top, precision % HOST_BITS_PER_WIDE_INT);
- if (top != 0 && top != (HOST_WIDE_INT)-1)
+ if (top != 0 && top != (HOST_WIDE_INT) -1)
return len;
/* At this point we know that the top is either 0 or -1. Find the
@@ -134,7 +132,7 @@ wi::from_buffer (const unsigned char *bu
/* We have to clear all the bits ourself, as we merely or in values
below. */
- unsigned int len = BLOCKS_NEEDED (precision);
+ unsigned int len = wi::blocks_needed (precision);
HOST_WIDE_INT *val = result.write_val ();
for (unsigned int i = 0; i < len; ++i)
val[i] = 0;
@@ -180,7 +178,7 @@ wi::to_mpz (const wide_int_ref &x, mpz_t
{
int len = x.get_len ();
const HOST_WIDE_INT *v = x.get_val ();
- int excess = len * HOST_BITS_PER_WIDE_INT - x.get_precision ();
+ unsigned int excess = wi::excess_bits (len, x.get_precision ());
if (wi::neg_p (x, sgn))
{
@@ -306,7 +304,8 @@ wi::force_to_size (HOST_WIDE_INT *val, c
unsigned int xlen, unsigned int xprecision,
unsigned int precision, signop sgn)
{
- unsigned int blocks_needed = BLOCKS_NEEDED (precision);
+ unsigned int blocks_needed = wi::blocks_needed (precision);
+ unsigned int xblocks_needed = wi::blocks_needed (xprecision);
unsigned int len = blocks_needed < xlen ? blocks_needed : xlen;
for (unsigned i = 0; i < len; i++)
val[i] = xval[i];
@@ -318,11 +317,11 @@ wi::force_to_size (HOST_WIDE_INT *val, c
/* Expanding. */
if (sgn == UNSIGNED)
{
- if (small_xprecision && len == BLOCKS_NEEDED (xprecision))
+ if (small_xprecision && len == xblocks_needed)
val[len - 1] = zext_hwi (val[len - 1], small_xprecision);
else if (val[len - 1] < 0)
{
- while (len < BLOCKS_NEEDED (xprecision))
+ while (len < xblocks_needed)
val[len++] = -1;
if (small_xprecision)
val[len - 1] = zext_hwi (val[len - 1], small_xprecision);
@@ -332,7 +331,7 @@ wi::force_to_size (HOST_WIDE_INT *val, c
}
else
{
- if (small_xprecision && len == BLOCKS_NEEDED (xprecision))
+ if (small_xprecision && len == xblocks_needed)
val[len - 1] = sext_hwi (val[len - 1], small_xprecision);
}
}
@@ -372,10 +371,8 @@ selt (const HOST_WIDE_INT *a, unsigned i
static inline HOST_WIDE_INT
top_bit_of (const HOST_WIDE_INT *a, unsigned int len, unsigned int prec)
{
- int excess = len * HOST_BITS_PER_WIDE_INT - prec;
unsigned HOST_WIDE_INT val = a[len - 1];
- if (excess > 0)
- val <<= excess;
+ val <<= wi::excess_bits (len, prec);
return val >> (HOST_BITS_PER_WIDE_INT - 1);
}
@@ -391,28 +388,16 @@ wi::eq_p_large (const HOST_WIDE_INT *op0
const HOST_WIDE_INT *op1, unsigned int op1len,
unsigned int prec)
{
- int l0 = op0len - 1;
- unsigned int small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1);
-
if (op0len != op1len)
return false;
- if (op0len == BLOCKS_NEEDED (prec) && small_prec)
- {
- /* It does not matter if we zext or sext here, we just have to
- do both the same way. */
- if (zext_hwi (op0 [l0], small_prec) != zext_hwi (op1 [l0], small_prec))
- return false;
- l0--;
- }
-
- while (l0 >= 0)
- if (op0[l0] != op1[l0])
+ for (unsigned int i = 0; i < op0len - 1; i++)
+ if (op0[i] != op1[i])
return false;
- else
- l0--;
- return true;
+ unsigned HOST_WIDE_INT top0 = op0[op0len - 1];
+ unsigned HOST_WIDE_INT top1 = op1[op1len - 1];
+ return ((top0 ^ top1) << wi::excess_bits (op0len, prec)) == 0;
}
/* Return true if OP0 < OP1 using signed comparisons. */
@@ -423,7 +408,7 @@ wi::lts_p_large (const HOST_WIDE_INT *op
{
HOST_WIDE_INT s0, s1;
unsigned HOST_WIDE_INT u0, u1;
- unsigned int blocks_needed = BLOCKS_NEEDED (precision);
+ unsigned int blocks_needed = wi::blocks_needed (precision);
unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
int l = MAX (op0len - 1, op1len - 1);
@@ -461,7 +446,7 @@ wi::cmps_large (const HOST_WIDE_INT *op0
{
HOST_WIDE_INT s0, s1;
unsigned HOST_WIDE_INT u0, u1;
- unsigned int blocks_needed = BLOCKS_NEEDED (precision);
+ unsigned int blocks_needed = wi::blocks_needed (precision);
unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
int l = MAX (op0len - 1, op1len - 1);
@@ -498,7 +483,7 @@ wi::ltu_p_large (const HOST_WIDE_INT *op
{
unsigned HOST_WIDE_INT x0;
unsigned HOST_WIDE_INT x1;
- unsigned int blocks_needed = BLOCKS_NEEDED (precision);
+ unsigned int blocks_needed = wi::blocks_needed (precision);
unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
int l = MAX (op0len - 1, op1len - 1);
@@ -525,7 +510,7 @@ wi::cmpu_large (const HOST_WIDE_INT *op0
{
unsigned HOST_WIDE_INT x0;
unsigned HOST_WIDE_INT x1;
- unsigned int blocks_needed = BLOCKS_NEEDED (precision);
+ unsigned int blocks_needed = wi::blocks_needed (precision);
unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
int l = MAX (op0len - 1, op1len - 1);
@@ -673,7 +658,7 @@ wide_int_storage::bswap () const
{
wide_int result = wide_int::create (precision);
unsigned int i, s;
- unsigned int len = BLOCKS_NEEDED (precision);
+ unsigned int len = wi::blocks_needed (precision);
unsigned int xlen = get_len ();
const HOST_WIDE_INT *xval = get_val ();
HOST_WIDE_INT *val = result.write_val ();
@@ -1149,7 +1134,7 @@ wi_unpack (unsigned HOST_HALF_WIDE_INT *
unsigned int i;
unsigned int j = 0;
unsigned int small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1);
- unsigned int blocks_needed = BLOCKS_NEEDED (prec);
+ unsigned int blocks_needed = wi::blocks_needed (prec);
HOST_WIDE_INT mask;
if (sgn == SIGNED)
@@ -1222,7 +1207,7 @@ wi::mul_internal (HOST_WIDE_INT *val, co
unsigned HOST_WIDE_INT o0, o1, k, t;
unsigned int i;
unsigned int j;
- unsigned int blocks_needed = BLOCKS_NEEDED (prec);
+ unsigned int blocks_needed = wi::blocks_needed (prec);
unsigned int half_blocks_needed = blocks_needed * 2;
/* The sizes here are scaled to support a 2x largest mode by 2x
largest mode yielding a 4x largest mode result. This is what is
@@ -1426,6 +1411,9 @@ wi::popcount (const wide_int_ref &x)
unsigned int i;
int count;
+ if (x.precision == 0)
+ return 0;
+
/* The high order block is special if it is the last block and the
precision is not an even multiple of HOST_BITS_PER_WIDE_INT. We
have to clear out any ones above the precision before doing
@@ -1645,8 +1633,8 @@ wi::divmod_internal (HOST_WIDE_INT *quot
unsigned int divisor_prec, signop sgn,
bool *oflow)
{
- unsigned int dividend_blocks_needed = 2 * BLOCKS_NEEDED (dividend_prec);
- unsigned int divisor_blocks_needed = 2 * BLOCKS_NEEDED (divisor_prec);
+ unsigned int dividend_blocks_needed = 2 * wi::blocks_needed (dividend_prec);
+ unsigned int divisor_blocks_needed = 2 * wi::blocks_needed (divisor_prec);
unsigned HOST_HALF_WIDE_INT
b_quotient[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
unsigned HOST_HALF_WIDE_INT
@@ -1671,7 +1659,7 @@ wi::divmod_internal (HOST_WIDE_INT *quot
/* The smallest signed number / -1 causes overflow. The dividend_len
check is for speed rather than correctness. */
if (sgn == SIGNED
- && dividend_len == BLOCKS_NEEDED (dividend_prec)
+ && dividend_len == wi::blocks_needed (dividend_prec)
&& divisor == -1
&& wi::only_sign_bit_p (dividend))
overflow = true;
@@ -1838,7 +1826,7 @@ wi::lshift_large (HOST_WIDE_INT *val, co
unsigned int small_shift = shift % HOST_BITS_PER_WIDE_INT;
/* The whole-block shift fills with zeros. */
- unsigned int len = BLOCKS_NEEDED (precision);
+ unsigned int len = wi::blocks_needed (precision);
for (unsigned int i = 0; i < skip; ++i)
val[i] = 0;
@@ -1876,7 +1864,7 @@ rshift_large_common (HOST_WIDE_INT *val,
/* Work out how many blocks are needed to store the significant bits
(excluding the upper zeros or signs). */
- unsigned int len = BLOCKS_NEEDED (xprecision - shift);
+ unsigned int len = wi::blocks_needed (xprecision - shift);
/* It's easier to handle the simple block case specially. */
if (small_shift == 0)
@@ -1949,6 +1937,9 @@ wi::arshift_large (HOST_WIDE_INT *val, c
int
wi::clz (const wide_int_ref &x)
{
+ if (x.precision == 0)
+ return 0;
+
/* Calculate how many bits there above the highest represented block. */
int count = x.precision - x.len * HOST_BITS_PER_WIDE_INT;
@@ -1973,6 +1964,9 @@ wi::clz (const wide_int_ref &x)
int
wi::clrsb (const wide_int_ref &x)
{
+ if (x.precision == 0)
+ return 0;
+
/* Calculate how many bits there above the highest represented block. */
int count = x.precision - x.len * HOST_BITS_PER_WIDE_INT;
@@ -2017,6 +2011,9 @@ wi::ctz (const wide_int_ref &x)
int
wi::exact_log2 (const wide_int_ref &x)
{
+ if (x.precision == 0)
+ return -1;
+
/* Reject cases where there are implicit -1 blocks above HIGH. */
if (x.len * HOST_BITS_PER_WIDE_INT < x.precision && x.sign_mask () < 0)
return -1;
Index: gcc/wide-int.h
===================================================================
--- gcc/wide-int.h 2014-05-02 16:28:07.657847935 +0100
+++ gcc/wide-int.h 2014-05-02 16:28:09.561842842 +0100
@@ -430,6 +430,9 @@ #define WIDE_INT_REF_FOR(T) \
/* Public functions for querying and operating on integers. */
namespace wi
{
+ unsigned int excess_bits (unsigned int, unsigned int);
+ unsigned int blocks_needed (unsigned int);
+
template <typename T>
unsigned int get_precision (const T &);
@@ -740,7 +743,7 @@ inline generic_wide_int <storage>::gener
inline HOST_WIDE_INT
generic_wide_int <storage>::to_shwi (unsigned int precision) const
{
- if (precision < HOST_BITS_PER_WIDE_INT)
+ if (precision > 0 && precision < HOST_BITS_PER_WIDE_INT)
return sext_hwi (this->get_val ()[0], precision);
else
return this->get_val ()[0];
@@ -764,7 +767,7 @@ generic_wide_int <storage>::to_shwi () c
inline unsigned HOST_WIDE_INT
generic_wide_int <storage>::to_uhwi (unsigned int precision) const
{
- if (precision < HOST_BITS_PER_WIDE_INT)
+ if (precision > 0 && precision < HOST_BITS_PER_WIDE_INT)
return zext_hwi (this->get_val ()[0], precision);
else
return this->get_val ()[0];
@@ -797,12 +800,7 @@ generic_wide_int <storage>::sign_mask ()
unsigned int len = this->get_len ();
unsigned HOST_WIDE_INT high = this->get_val ()[len - 1];
if (!is_sign_extended)
- {
- unsigned int precision = this->get_precision ();
- int excess = len * HOST_BITS_PER_WIDE_INT - precision;
- if (excess > 0)
- high <<= excess;
- }
+ high <<= wi::excess_bits (len, this->get_precision ());
return (HOST_WIDE_INT) (high) < 0 ? -1 : 0;
}
@@ -1068,7 +1066,7 @@ wide_int_storage::write_val ()
wide_int_storage::set_len (unsigned int l, bool is_sign_extended)
{
len = l;
- if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > precision)
+ if (!is_sign_extended && wi::excess_bits (len, precision) > 0)
val[len - 1] = sext_hwi (val[len - 1],
precision % HOST_BITS_PER_WIDE_INT);
}
@@ -1347,7 +1345,7 @@ trailing_wide_int_storage::write_val ()
trailing_wide_int_storage::set_len (unsigned int len, bool is_sign_extended)
{
*m_len = len;
- if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > m_precision)
+ if (!is_sign_extended && wi::excess_bits (len, m_precision) > 0)
m_val[len - 1] = sext_hwi (m_val[len - 1],
m_precision % HOST_BITS_PER_WIDE_INT);
}
@@ -1368,8 +1366,7 @@ trailing_wide_int_storage::operator = (c
trailing_wide_ints <N>::set_precision (unsigned int precision)
{
m_precision = precision;
- m_max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
- / HOST_BITS_PER_WIDE_INT);
+ m_max_len = wi::blocks_needed (precision);
}
/* Return a reference to element INDEX. */
@@ -1387,9 +1384,7 @@ trailing_wide_ints <N>::operator [] (uns
inline size_t
trailing_wide_ints <N>::extra_size (unsigned int precision)
{
- unsigned int max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
- / HOST_BITS_PER_WIDE_INT);
- return (N * max_len - 1) * sizeof (HOST_WIDE_INT);
+ return (N * wi::blocks_needed (precision) - 1) * sizeof (HOST_WIDE_INT);
}
/* This macro is used in structures that end with a trailing_wide_ints field
@@ -1621,6 +1616,26 @@ decompose (HOST_WIDE_INT *scratch, unsig
signop, bool *);
}
+/* If a value of length LEN blocks has more than PRECISION bits, return
+ the number of excess bits, otherwise return 0. For the special case
+ of PRECISION being zero, the single HWI must have the value zero and
+ there are no excess bits. Handling zero precision this way means
+ that the result is always a valid shift amount. */
+inline unsigned int
+wi::excess_bits (unsigned int len, unsigned int precision)
+{
+ unsigned int excess = len * HOST_BITS_PER_WIDE_INT - precision;
+ return excess < HOST_BITS_PER_WIDE_INT ? excess : 0;
+}
+
+/* Return the number of blocks needed for precision PRECISION. */
+inline unsigned int
+wi::blocks_needed (unsigned int precision)
+{
+ return precision == 0 ? 1 : ((precision + HOST_BITS_PER_WIDE_INT - 1)
+ / HOST_BITS_PER_WIDE_INT);
+}
+
/* Return the number of bits that integer X can hold. */
template <typename T>
inline unsigned int
@@ -1729,9 +1744,7 @@ wi::eq_p (const T1 &x, const T2 &y)
return xi.val[0] == 0;
/* Otherwise flush out any excess bits first. */
unsigned HOST_WIDE_INT diff = xi.val[0] ^ yi.val[0];
- int excess = HOST_BITS_PER_WIDE_INT - precision;
- if (excess > 0)
- diff <<= excess;
+ diff <<= wi::excess_bits (1, precision);
return diff == 0;
}
return eq_p_large (xi.val, xi.len, yi.val, yi.len, precision);
@@ -2323,7 +2336,9 @@ wi::add (const T1 &x, const T2 &y, signo
unsigned HOST_WIDE_INT xl = xi.ulow ();
unsigned HOST_WIDE_INT yl = yi.ulow ();
unsigned HOST_WIDE_INT resultl = xl + yl;
- if (sgn == SIGNED)
+ if (precision == 0)
+ *overflow = false;
+ else if (sgn == SIGNED)
*overflow = (((resultl ^ xl) & (resultl ^ yl))
>> (precision - 1)) & 1;
else
@@ -2396,7 +2411,9 @@ wi::sub (const T1 &x, const T2 &y, signo
unsigned HOST_WIDE_INT xl = xi.ulow ();
unsigned HOST_WIDE_INT yl = yi.ulow ();
unsigned HOST_WIDE_INT resultl = xl - yl;
- if (sgn == SIGNED)
+ if (precision == 0)
+ *overflow = false;
+ else if (sgn == SIGNED)
*overflow = (((xl ^ yl) & (resultl ^ xl)) >> (precision - 1)) & 1;
else
*overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))