So for this source, compiled for x86_64 with -O3:
typedef unsigned long int uint64_t;
typedef long int int64_t;
int summation_helper_1(int64_t* products, uint64_t count)
{
int s = 0;
uint64_t i;
for(i=0; i<count; i++)
{
int64_t val = (products[i]>0) ? 1 : -1;
products[i] *= val;
if(products[i] != i)
val = -val;
products[i] = val;
s += val;
}
return s;
}
int summation_helper_2(int64_t* products, uint64_t count)
{
int s = 0;
uint64_t i;
for(i=0; i<count; i++)
{
int val = (products[i]>0) ? 1 : -1;
products[i] *= val;
if(products[i] != i)
val = -val;
products[i] = val;
s += val;
}
return s;
}
The loops we generate are pretty bad and have regressed relative to
older versions of GCC.
For the first loop, we have the following .optimized output for the loop:
<bb 4>:
# s_28 = PHI <s_20(5), 0(3)>
# i_27 = PHI <i_21(5), 0(3)>
_11 = MEM[base: products_9(D), index: i_27, step: 8, offset: 0B];
val_4 = _11 > 0 ? 1 : -1;
prephitmp_38 = _11 > 0 ? -1 : 1;
prephitmp_39 = _11 > 0 ? 4294967295 : 1;
prephitmp_41 = _11 > 0 ? 1 : 4294967295;
_12 = val_4 * _11;
_14 = (long unsigned int) _12;
val_3 = _14 != i_27 ? prephitmp_38 : val_4;
prephitmp_44 = _14 != i_27 ? prephitmp_39 : prephitmp_41;
MEM[base: products_9(D), index: i_27, step: 8, offset: 0B] = val_3;
s.1_18 = (unsigned int) s_28;
_19 = prephitmp_44 + s.1_18;
s_20 = (int) _19;
i_21 = i_27 + 1;
if (i_21 != count_7(D))
goto <bb 5>;
else
goto <bb 6>;
<bb 5>:
goto <bb 4>;
Note the series of COND_EXPRs. A couple are just conditional negation
which can be implemented with a straight-line code sequence. Using
that straight-line sequence results in:
<bb 4>:
# s_31 = PHI <s_20(5), 0(3)>
# i_32 = PHI <i_21(5), 0(3)>
_11 = MEM[base: products_9(D), index: i_32, step: 8, offset: 0B];
val_4 = _11 > 0 ? 1 : -1;
_12 = val_4 * _11;
_14 = (long unsigned int) _12;
_24 = _14 != i_32;
_25 = (int64_t) _24;
_29 = -_25;
_28 = _29 ^ val_4;
_27 = _28 + _25;
MEM[base: products_9(D), index: i_32, step: 8, offset: 0B] = _27;
_17 = (unsigned int) _27;
s.1_18 = (unsigned int) s_31;
_19 = _17 + s.1_18;
s_20 = (int) _19;
i_21 = i_32 + 1;
if (i_21 != count_7(D))
goto <bb 5>;
else
goto <bb 6>;
<bb 5>:
goto <bb 4>;
Which *appears* worse. However, that code can much more easily be
handled by the RTL optimizers. When we look at what the trunk
generates at the assembly level we have:
.L3:
movq (%rdi,%rcx,8), %rdx
testq %rdx, %rdx
setg %r8b
movzbl %r8b, %r10d
movzbl %r8b, %r8d
leaq -1(%r10,%r10), %r10
leal -1(%r8,%r8), %r8d
movq %r10, %r11
imulq %rdx, %r11
testq %rdx, %rdx
setle %dl
movzbl %dl, %r9d
movzbl %dl, %edx
leaq -1(%r9,%r9), %r9
leal -1(%rdx,%rdx), %edx
cmpq %rcx, %r11
cmove %r10, %r9
cmove %r8d, %edx
movq %r9, (%rdi,%rcx,8)
addq $1, %rcx
addl %edx, %eax
cmpq %rsi, %rcx
jne .L3
(Ick)
With the conditional negation patch that turns into:
L3:
movq (%rdi,%rcx,8), %r8
xorl %edx, %edx
testq %r8, %r8
setg %dl
leaq -1(%rdx,%rdx), %rdx
imulq %rdx, %r8
cmpq %rcx, %r8
setne %r8b
movzbl %r8b, %r8d
movq %r8, %r9
negq %r9
xorq %r9, %rdx
addq %r8, %rdx
movq %rdx, (%rdi,%rcx,8)
addq $1, %rcx
addl %edx, %eax
cmpq %rsi, %rcx
jne .L3
No branches within the loop, no conditional moves either. In all it's 5
instructions shorter.
The second loop shows similar effects, though they're not as dramatic.
Before:
<bb 4>:
# s_27 = PHI <s_19(5), 0(3)>
# i_26 = PHI <i_20(5), 0(3)>
_11 = MEM[base: products_9(D), index: i_26, step: 8, offset: 0B];
val_4 = _11 > 0 ? 1 : -1;
prephitmp_32 = _11 > 0 ? 1 : -1;
prephitmp_33 = _11 > 0 ? -1 : 1;
prephitmp_34 = _11 > 0 ? -1 : 1;
_13 = _11 * prephitmp_32;
_15 = (long unsigned int) _13;
val_3 = _15 != i_26 ? prephitmp_33 : val_4;
prephitmp_36 = _15 != i_26 ? prephitmp_34 : prephitmp_32;
MEM[base: products_9(D), index: i_26, step: 8, offset: 0B] =
prephitmp_36;
s_19 = val_3 + s_27;
i_20 = i_26 + 1;
if (i_20 != count_7(D))
goto <bb 5>;
else
goto <bb 6>;
<bb 5>:
goto <bb 4>;
Which results in the following assembly:
.L8:
movq (%rdi,%r8,8), %rdx
testq %rdx, %rdx
movq %rdx, %r11
setg %cl
movzbl %cl, %r10d
movzbl %cl, %ecx
leaq -1(%rcx,%rcx), %rcx
leal -1(%r10,%r10), %r10d
imulq %rcx, %r11
testq %rdx, %rdx
setle %dl
movzbl %dl, %r9d
movzbl %dl, %edx
leaq -1(%r9,%r9), %r9
leal -1(%rdx,%rdx), %edx
cmpq %r8, %r11
cmovne %r9, %rcx
cmove %r10d, %edx
movq %rcx, (%rdi,%r8,8)
addq $1, %r8
addl %edx, %eax
cmpq %rsi, %r8
jne .L8
With the conditional negation patch:
<bb 4>:
# s_31 = PHI <s_20(5), 0(3)>
# i_32 = PHI <i_21(5), 0(3)>
_11 = MEM[base: products_9(D), index: i_32, step: 8, offset: 0B];
val_4 = _11 > 0 ? 1 : -1;
_12 = val_4 * _11;
_14 = (long unsigned int) _12;
_24 = _14 != i_32;
_25 = (int64_t) _24;
_29 = -_25;
_28 = _29 ^ val_4;
_27 = _28 + _25;
MEM[base: products_9(D), index: i_32, step: 8, offset: 0B] = _27;
_17 = (unsigned int) _27;
s.1_18 = (unsigned int) s_31;
_19 = _17 + s.1_18;
s_20 = (int) _19;
i_21 = i_32 + 1;
if (i_21 != count_7(D))
goto <bb 5>;
else
goto <bb 6>;
<bb 5>:
goto <bb 4>;
Which again looks worse than the original, but optimizes well into:
.L8:
movq (%rdi,%r8,8), %r9
testq %r9, %r9
setg %cl
movzbl %cl, %edx
leaq -1(%rdx,%rdx), %rdx
imulq %r9, %rdx
xorl %r9d, %r9d
cmpq %r8, %rdx
movzbl %cl, %edx
setne %r9b
leal -1(%rdx,%rdx), %edx
movl %r9d, %r10d
negl %r10d
xorl %r10d, %edx
addl %r9d, %edx
movslq %edx, %rcx
addl %edx, %eax
movq %rcx, (%rdi,%r8,8)
addq $1, %r8
cmpq %rsi, %r8
jne .L8
Bootstrapped and regression tested on x86_64-unknown-linux-gnu. OK for
the trunk?
PR tree-optimization/45685
* tree-ssa-phiopt.c (neg_replacement): New function.
(tree_ssa_phiopt_worker): Call it.
PR tree-optimization/45685
* gcc.dg/tree-ssa/pr45685.c: New test.
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/pr45685.c
b/gcc/testsuite/gcc.dg/tree-ssa/pr45685.c
new file mode 100644
index 0000000..0628943
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/tree-ssa/pr45685.c
@@ -0,0 +1,41 @@
+/* { dg-do compile } */
+/* { dg-options "-O3 -fdump-tree-phiopt1-details" } */
+
+typedef unsigned long int uint64_t;
+typedef long int int64_t;
+int summation_helper_1(int64_t* products, uint64_t count)
+{
+ int s = 0;
+ uint64_t i;
+ for(i=0; i<count; i++)
+ {
+ int64_t val = (products[i]>0) ? 1 : -1;
+ products[i] *= val;
+ if(products[i] != i)
+ val = -val;
+ products[i] = val;
+ s += val;
+ }
+ return s;
+}
+
+
+int summation_helper_2(int64_t* products, uint64_t count)
+{
+ int s = 0;
+ uint64_t i;
+ for(i=0; i<count; i++)
+ {
+ int val = (products[i]>0) ? 1 : -1;
+ products[i] *= val;
+ if(products[i] != i)
+ val = -val;
+ products[i] = val;
+ s += val;
+ }
+ return s;
+}
+
+/* { dg-final { scan-tree-dump-times "converted to straightline code" 2
"phiopt1" } } */
+/* { dg-final { cleanup-tree-dump "phiopt1" } } */
+
diff --git a/gcc/tree-ssa-phiopt.c b/gcc/tree-ssa-phiopt.c
index 11e565f..2522255 100644
--- a/gcc/tree-ssa-phiopt.c
+++ b/gcc/tree-ssa-phiopt.c
@@ -69,6 +69,8 @@ static bool minmax_replacement (basic_block, basic_block,
edge, edge, gimple, tree, tree);
static bool abs_replacement (basic_block, basic_block,
edge, edge, gimple, tree, tree);
+static bool neg_replacement (basic_block, basic_block,
+ edge, edge, gimple, tree, tree);
static bool cond_store_replacement (basic_block, basic_block, edge, edge,
struct pointer_set_t *);
static bool cond_if_else_store_replacement (basic_block, basic_block,
basic_block);
@@ -489,6 +491,8 @@ tree_ssa_phiopt_worker (bool do_store_elim, bool
do_hoist_loads)
cfgchanged = true;
else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
cfgchanged = true;
+ else if (neg_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
+ cfgchanged = true;
else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
cfgchanged = true;
}
@@ -1285,6 +1289,143 @@ abs_replacement (basic_block cond_bb, basic_block
middle_bb,
return true;
}
+/* The function neg_replacement replaces conditional negation with
+ equivalent straight line code. Returns TRUE if replacement is done,
+ otherwise returns FALSE.
+
+ COND_BB branches around negation occuring in MIDDLE_BB.
+
+ E0 and E1 are edges out of COND_BB. E0 reaches MIDDLE_BB and
+ E1 reaches the other successor which should contain PHI with
+ arguments ARG0 and ARG1.
+
+ Assuming negation is to occur when the condition is true,
+ then the non-branching sequence is:
+
+ result = (rhs ^ -cond) + cond
+
+ Inverting the condition or its result gives us negation
+ when the original condition is false. */
+
+static bool
+neg_replacement (basic_block cond_bb, basic_block middle_bb,
+ edge e0 ATTRIBUTE_UNUSED, edge e1,
+ gimple phi, tree arg0, tree arg1)
+{
+ gimple new_stmt, cond;
+ gimple_stmt_iterator gsi;
+ gimple assign;
+ edge true_edge, false_edge;
+ tree rhs, lhs;
+ enum tree_code cond_code;
+ bool invert = false;
+
+ /* This transformation performs logical operations on the
+ incoming arguments. So force them to be integral types. */
+ if (!INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
+ return false;
+
+ /* OTHER_BLOCK must have only one executable statement which must have the
+ form arg0 = -arg1 or arg1 = -arg0. */
+
+ assign = last_and_only_stmt (middle_bb);
+ /* If we did not find the proper negation assignment, then we can not
+ optimize. */
+ if (assign == NULL)
+ return false;
+
+ /* If we got here, then we have found the only executable statement
+ in OTHER_BLOCK. If it is anything other than arg0 = -arg1 or
+ arg1 = -arg0, then we can not optimize. */
+ if (gimple_code (assign) != GIMPLE_ASSIGN)
+ return false;
+
+ lhs = gimple_assign_lhs (assign);
+
+ if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
+ return false;
+
+ rhs = gimple_assign_rhs1 (assign);
+
+ /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
+ if (!(lhs == arg0 && rhs == arg1)
+ && !(lhs == arg1 && rhs == arg0))
+ return false;
+
+ /* The basic sequence assumes we negate when the condition is true.
+ If we need the opposite, then we will either need to invert the
+ condition or its result. */
+ extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
+ invert = false_edge->dest == middle_bb;
+
+ /* Unlike abs_replacement, we can handle arbitrary conditionals here. */
+ cond = last_stmt (cond_bb);
+ cond_code = gimple_cond_code (cond);
+
+ /* If inversion is needed, first try to invert the test since
+ that's cheapest. */
+ if (invert)
+ {
+ enum tree_code new_code
+ = invert_tree_comparison (cond_code,
+ HONOR_NANS (TYPE_MODE (TREE_TYPE (rhs))));
+
+ /* If invert_tree_comparison was successful, then use its return
+ value as the new code and note that inversion is no longer
+ needed. */
+ if (new_code != ERROR_MARK)
+ {
+ cond_code = new_code;
+ invert = false;
+ }
+ }
+
+ tree cond_val = make_ssa_name (boolean_type_node, NULL);
+ new_stmt = gimple_build_assign_with_ops (cond_code, cond_val,
+ gimple_cond_lhs (cond),
+ gimple_cond_rhs (cond));
+ gsi = gsi_last_bb (cond_bb);
+ gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
+
+ /* If we still need inversion, then invert the result of the
+ condition. */
+ if (invert)
+ {
+ tree tmp = make_ssa_name (boolean_type_node, NULL);
+ new_stmt = gimple_build_assign_with_ops (BIT_XOR_EXPR, tmp,
+ cond_val, boolean_true_node);
+ gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
+ cond_val = tmp;
+ }
+
+ /* Get the condition in the right type so that we can perform
+ logical and arithmetic operations on it. */
+ tree cond_val_converted = make_ssa_name (TREE_TYPE (rhs), NULL);
+ new_stmt = gimple_build_assign_with_ops (NOP_EXPR, cond_val_converted,
+ cond_val, NULL_TREE);
+ gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
+
+ tree neg_cond_val_converted = make_ssa_name (TREE_TYPE (rhs), NULL);
+ new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, neg_cond_val_converted,
+ cond_val_converted, NULL_TREE);
+ gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
+
+ tree tmp = make_ssa_name (TREE_TYPE (rhs), NULL);
+ new_stmt = gimple_build_assign_with_ops (BIT_XOR_EXPR, tmp,
+ rhs, neg_cond_val_converted);
+ gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
+
+ tree new_lhs = make_ssa_name (TREE_TYPE (rhs), NULL);
+ new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, new_lhs,
+ tmp, cond_val_converted);
+ gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
+
+ replace_phi_edge_with_variable (cond_bb, e1, phi, new_lhs);
+
+ /* Note that we optimized this PHI. */
+ return true;
+}
+
/* Auxiliary functions to determine the set of memory accesses which
can't trap because they are preceded by accesses to the same memory
portion. We do that for MEM_REFs, so we only need to track