The methods layout_{left,right}::mapping::stride are defined
as
\prod_{i = 0}^r E[i]
\prod_{i = r+1}^n E[i]
This is computed as the product of a precomputed static product and the
product of the required dynamic extents.
Disassembly shows that even for low-rank extents, i.e. rank == 1 and
rank == 2, with at least one dynamic extent, the generated code loads
two values; and then runs the loop over at most one element, e.g. for
stride_left_d5 defined below the generated code is:
220: 48 8b 04 f5 00 00 00 mov rax,QWORD PTR [rsi*8+0x0]
227: 00
228: 31 d2 xor edx,edx
22a: 48 85 c0 test rax,rax
22d: 74 23 je 252 <stride_left_d5+0x32>
22f: 48 8b 0c f5 00 00 00 mov rcx,QWORD PTR [rsi*8+0x0]
236: 00
237: 48 c1 e1 02 shl rcx,0x2
23b: 74 13 je 250 <stride_left_d5+0x30>
23d: 48 01 f9 add rcx,rdi
240: 48 63 17 movsxd rdx,DWORD PTR [rdi]
243: 48 83 c7 04 add rdi,0x4
247: 48 0f af c2 imul rax,rdx
24b: 48 39 f9 cmp rcx,rdi
24e: 75 f0 jne 240 <stride_left_d5+0x20>
250: 89 c2 mov edx,eax
252: 89 d0 mov eax,edx
254: c3 ret
If there's no dynamic extents, it simply loads the precomputed product
of static extents.
For rank == 1 the answer is the constant `1`; for rank == 2 it's either 1
or
extents.extent(k), with k == 0 for layout_left and k == 1 for
layout_right.
Consider,
using Ed = std::extents<int, dyn>;
int stride_left_d(const std::layout_left::mapping<Ed>& m, size_t r)
{ return m.stride(r); }
using E3d = std::extents<int, 3, dyn>;
int stride_left_3d(const std::layout_left::mapping<E3d>& m, size_t r)
{ return m.stride(r); }
using Ed5 = std::extents<int, dyn, 5>;
int stride_left_d5(const std::layout_left::mapping<Ed5>& m, size_t r)
{ return m.stride(r); }
The optimized code for these three cases is:
0000000000000060 <stride_left_d>:
60: b8 01 00 00 00 mov eax,0x1
65: c3 ret
0000000000000090 <stride_left_3d>:
90: 48 83 fe 01 cmp rsi,0x1
94: 19 c0 sbb eax,eax
96: 83 e0 fe and eax,0xfffffffe
99: 83 c0 03 add eax,0x3
9c: c3 ret
00000000000000a0 <stride_left_d5>:
a0: b8 01 00 00 00 mov eax,0x1
a5: 48 85 f6 test rsi,rsi
a8: 74 02 je ac <stride_left_d5+0xc>
aa: 8b 07 mov eax,DWORD PTR [rdi]
ac: c3 ret
For rank == 1 it simply returns 1 (as expected). For rank == 2, it
either implements a branchless formula, or conditionally loads one
value. In all cases involving a dynamic extent this seems like it's
always doing clearly less work, both in terms of computation and loads.
In cases not involving a dynamic extent, it replaces loading one value
with a branchless sequence of four instructions.
This commit also refactors __size to no use any of the precomputed
arrays. This prevents instantiating __{fwd,rev}_partial_prods for
low-rank extents. This results in a further size reduction of a
reference object file (described two commits prior) by 9% from 46.0kB to
41.9kB.
In a prior commit we optimized __size to produce better object code by
precomputing the static products. This refactor enables the optimizer to
generate the same optimized code.
libstdc++-v3/ChangeLog:
* include/std/mdspan (__mdspan::__fwd_prod): Optimize
for rank <= 2.
(__mdspan::__rev_prod): Ditto.
(__mdspan::__size): Refactor to use a pre-computed product, not
a partial product.
Signed-off-by: Luc Grosheintz <luc.groshei...@gmail.com>
---
libstdc++-v3/include/std/mdspan | 32 ++++++++++++++++++++++++++------
1 file changed, 26 insertions(+), 6 deletions(-)
diff --git a/libstdc++-v3/include/std/mdspan
b/libstdc++-v3/include/std/mdspan
index dc1b44ee35c..11a5063f60d 100644
--- a/libstdc++-v3/include/std/mdspan
+++ b/libstdc++-v3/include/std/mdspan
@@ -423,25 +423,45 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION
constexpr typename _Extents::index_type
__fwd_prod(const _Extents& __exts, size_t __r) noexcept
{
+ constexpr size_t __rank = _Extents::rank();
constexpr auto __sta_exts = __static_extents<_Extents>();
- size_t __sta_prod = __fwd_partial_prods<__sta_exts>[__r];
- return __extents_prod(__exts, __sta_prod, 0, __r);
+ if constexpr (__rank == 1)
+ return 1;
+ else if constexpr (__rank == 2)
+ return __r == 0 ? 1 : __exts.extent(0);
+ else
+ {
+ size_t __sta_prod = __fwd_partial_prods<__sta_exts>[__r];
+ return __extents_prod(__exts, __sta_prod, 0, __r);
+ }
}
template<typename _Extents>
constexpr typename _Extents::index_type
__rev_prod(const _Extents& __exts, size_t __r) noexcept
{
- constexpr auto __sta_exts = __static_extents<_Extents>();
constexpr size_t __rank = _Extents::rank();
- size_t __sta_prod = __rev_partial_prods<__sta_exts>[__r];
- return __extents_prod(__exts, __sta_prod, __r + 1, __rank);
+ constexpr auto __sta_exts = __static_extents<_Extents>();
+ if constexpr (__rank == 1)
+ return 1;
+ else if constexpr (__rank == 2)
+ return __r == 0 ? __exts.extent(1) : 1;
+ else
+ {
+ size_t __sta_prod = __rev_partial_prods<__sta_exts>[__r];
+ return __extents_prod(__exts, __sta_prod, __r + 1, __rank);
+ }
}
template<typename _Extents>
constexpr typename _Extents::index_type
__size(const _Extents& __exts) noexcept
- { return __fwd_prod(__exts, __exts.rank()); }
+ {
+ constexpr auto __sta_exts = __static_extents<_Extents>();