On Thu, 3 Aug 2023 at 18:46, Richard Sandiford <richard.sandif...@arm.com> wrote: > > Richard Sandiford <richard.sandif...@arm.com> writes: > > Prathamesh Kulkarni <prathamesh.kulka...@linaro.org> writes: > >> On Tue, 25 Jul 2023 at 18:25, Richard Sandiford > >> <richard.sandif...@arm.com> wrote: > >>> > >>> Hi, > >>> > >>> Thanks for the rework and sorry for the slow review. > >> Hi Richard, > >> Thanks for the suggestions! Please find my responses inline below. > >>> > >>> Prathamesh Kulkarni <prathamesh.kulka...@linaro.org> writes: > >>> > Hi Richard, > >>> > This is reworking of patch to extend fold_vec_perm to handle VLA > >>> > vectors. > >>> > The attached patch unifies handling of VLS and VLA vector_csts, while > >>> > using fallback code > >>> > for ctors. > >>> > > >>> > For VLS vector, the patch ignores underlying encoding, and > >>> > uses npatterns = nelts, and nelts_per_pattern = 1. > >>> > > >>> > For VLA patterns, if sel has a stepped sequence, then it > >>> > only chooses elements from a particular pattern of a particular > >>> > input vector. > >>> > > >>> > To make things simpler, the patch imposes following constraints: > >>> > (a) op0_npatterns, op1_npatterns and sel_npatterns are powers of 2. > >>> > (b) The step size for a stepped sequence is a power of 2, and > >>> > multiple of npatterns of chosen input vector. > >>> > (c) Runtime vector length of sel is a multiple of sel_npatterns. > >>> > So, we don't handle sel.length = 2 + 2x and npatterns = 4. > >>> > > >>> > Eg: > >>> > op0, op1: npatterns = 2, nelts_per_pattern = 3 > >>> > op0_len = op1_len = 16 + 16x. > >>> > sel = { 0, 0, 2, 0, 4, 0, ... } > >>> > npatterns = 2, nelts_per_pattern = 3. > >>> > > >>> > For pattern {0, 2, 4, ...} > >>> > Let, > >>> > a1 = 2 > >>> > S = step size = 2 > >>> > > >>> > Let Esel denote number of elements per pattern in sel at runtime. > >>> > Esel = (16 + 16x) / npatterns_sel > >>> > = (16 + 16x) / 2 > >>> > = (8 + 8x) > >>> > > >>> > So, last element of pattern: > >>> > ae = a1 + (Esel - 2) * S > >>> > = 2 + (8 + 8x - 2) * 2 > >>> > = 14 + 16x > >>> > > >>> > a1 /trunc arg0_len = 2 / (16 + 16x) = 0 > >>> > ae /trunc arg0_len = (14 + 16x) / (16 + 16x) = 0 > >>> > Since both are equal with quotient = 0, we select elements from op0. > >>> > > >>> > Since step size (S) is a multiple of npatterns(op0), we select > >>> > all elements from same pattern of op0. > >>> > > >>> > res_npatterns = max (op0_npatterns, max (op1_npatterns, sel_npatterns)) > >>> > = max (2, max (2, 2) > >>> > = 2 > >>> > > >>> > res_nelts_per_pattern = max (op0_nelts_per_pattern, > >>> > max > >>> > (op1_nelts_per_pattern, > >>> > > >>> > sel_nelts_per_pattern)) > >>> > = max (3, max (3, 3)) > >>> > = 3 > >>> > > >>> > So res has encoding with npatterns = 2, nelts_per_pattern = 3. > >>> > res: { op0[0], op0[0], op0[2], op0[0], op0[4], op0[0], ... } > >>> > > >>> > Unfortunately, this results in an issue for poly_int_cst index: > >>> > For example, > >>> > op0, op1: npatterns = 1, nelts_per_pattern = 3 > >>> > op0_len = op1_len = 4 + 4x > >>> > > >>> > sel: { 4 + 4x, 5 + 4x, 6 + 4x, ... } // should choose op1 > >>> > > >>> > In this case, > >>> > a1 = 5 + 4x > >>> > S = (6 + 4x) - (5 + 4x) = 1 > >>> > Esel = 4 + 4x > >>> > > >>> > ae = a1 + (esel - 2) * S > >>> > = (5 + 4x) + (4 + 4x - 2) * 1 > >>> > = 7 + 8x > >>> > > >>> > IIUC, 7 + 8x will always be index for last element of op1 ? > >>> > if x = 0, len = 4, 7 + 8x = 7 > >>> > if x = 1, len = 8, 7 + 8x = 15, etc. > >>> > So the stepped sequence will always choose elements > >>> > from op1 regardless of vector length for above case ? > >>> > > >>> > However, > >>> > ae /trunc op0_len > >>> > = (7 + 8x) / (4 + 4x) > >>> > which is not defined because 7/4 != 8/4 > >>> > and we return NULL_TREE, but I suppose the expected result would be: > >>> > res: { op1[0], op1[1], op1[2], ... } ? > >>> > > >>> > The patch passes bootstrap+test on aarch64-linux-gnu with and without > >>> > sve, > >>> > and on x86_64-unknown-linux-gnu. > >>> > I would be grateful for suggestions on how to proceed. > >>> > > >>> > Thanks, > >>> > Prathamesh > >>> > > >>> > diff --git a/gcc/fold-const.cc b/gcc/fold-const.cc > >>> > index a02ede79fed..8028b3e8e9a 100644 > >>> > --- a/gcc/fold-const.cc > >>> > +++ b/gcc/fold-const.cc > >>> > @@ -85,6 +85,10 @@ along with GCC; see the file COPYING3. If not see > >>> > #include "vec-perm-indices.h" > >>> > #include "asan.h" > >>> > #include "gimple-range.h" > >>> > +#include <algorithm> > >>> > +#include "tree-pretty-print.h" > >>> > +#include "gimple-pretty-print.h" > >>> > +#include "print-tree.h" > >>> > > >>> > /* Nonzero if we are folding constants inside an initializer or a C++ > >>> > manifestly-constant-evaluated context; zero otherwise. > >>> > @@ -10493,15 +10497,9 @@ fold_mult_zconjz (location_t loc, tree type, > >>> > tree expr) > >>> > static bool > >>> > vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts) > >>> > { > >>> > - unsigned HOST_WIDE_INT i, nunits; > >>> > + unsigned HOST_WIDE_INT i; > >>> > > >>> > - if (TREE_CODE (arg) == VECTOR_CST > >>> > - && VECTOR_CST_NELTS (arg).is_constant (&nunits)) > >>> > - { > >>> > - for (i = 0; i < nunits; ++i) > >>> > - elts[i] = VECTOR_CST_ELT (arg, i); > >>> > - } > >>> > - else if (TREE_CODE (arg) == CONSTRUCTOR) > >>> > + if (TREE_CODE (arg) == CONSTRUCTOR) > >>> > { > >>> > constructor_elt *elt; > >>> > > >>> > @@ -10519,6 +10517,230 @@ vec_cst_ctor_to_array (tree arg, unsigned int > >>> > nelts, tree *elts) > >>> > return true; > >>> > } > >>> > > >>> > +/* Return a vector with (NPATTERNS, NELTS_PER_PATTERN) encoding. */ > >>> > + > >>> > +static tree > >>> > +vector_cst_reshape (tree vec, unsigned npatterns, unsigned > >>> > nelts_per_pattern) > >>> > +{ > >>> > + gcc_assert (pow2p_hwi (npatterns)); > >>> > + > >>> > + if (VECTOR_CST_NPATTERNS (vec) == npatterns > >>> > + && VECTOR_CST_NELTS_PER_PATTERN (vec) == nelts_per_pattern) > >>> > + return vec; > >>> > + > >>> > + tree v = make_vector (exact_log2 (npatterns), nelts_per_pattern); > >>> > + TREE_TYPE (v) = TREE_TYPE (vec); > >>> > + > >>> > + unsigned nelts = npatterns * nelts_per_pattern; > >>> > + for (unsigned i = 0; i < nelts; i++) > >>> > + VECTOR_CST_ENCODED_ELT(v, i) = vector_cst_elt (vec, i); > >>> > + return v; > >>> > +} > >>> > + > >>> > +/* Helper routine for fold_vec_perm_vla to check if ARG is a suitable > >>> > + operand for VLA vec_perm folding. If arg is VLS, then set > >>> > + NPATTERNS = nelts and NELTS_PER_PATTERN = 1. */ > >>> > + > >>> > +static tree > >>> > +valid_operand_for_fold_vec_perm_cst_p (tree arg) > >>> > +{ > >>> > + if (TREE_CODE (arg) != VECTOR_CST) > >>> > + return NULL_TREE; > >>> > + > >>> > + unsigned HOST_WIDE_INT nelts; > >>> > + unsigned npatterns, nelts_per_pattern; > >>> > + if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)).is_constant (&nelts)) > >>> > + { > >>> > + npatterns = nelts; > >>> > + nelts_per_pattern = 1; > >>> > + } > >>> > + else > >>> > + { > >>> > + npatterns = VECTOR_CST_NPATTERNS (arg); > >>> > + nelts_per_pattern = VECTOR_CST_NELTS_PER_PATTERN (arg); > >>> > + } > >>> > + > >>> > + if (!pow2p_hwi (npatterns)) > >>> > + return NULL_TREE; > >>> > + > >>> > + return vector_cst_reshape (arg, npatterns, nelts_per_pattern); > >>> > +} > >>> > >>> I don't think we should reshape the vectors for VLS, since it would > >>> create more nodes for GC to clean up later. Also, the "compact" encoding > >>> is canonical even for VLS, so the reshaping would effectively create > >>> noncanonical constants (even if only temporarily). > >> Removed in the attached patch. > >>> > >>> Instead, I think we should change the later: > >>> > >>> > + if (!valid_mask_for_fold_vec_perm_cst_p (arg0, arg1, sel, > >>> > sel_npatterns, > >>> > + sel_nelts_per_pattern, reason, > >>> > verbose)) > >>> > + return NULL_TREE; > >>> > >>> so that it comes after the computation of res_npatterns and > >>> res_nelts_per_pattern. Then, if valid_mask_for_fold_vec_perm_cst_p > >>> returns false, and if the result type has a constant number of elements, > >>> we should: > >>> > >>> * set res_npatterns to that number of elements > >>> * set res_nelts_per_pattern to 1 > >>> * continue instead of returning null > >> Assuming we don't enforce only VLA or only VLS for input vectors and sel, > >> won't that be still an issue if res (and sel) is VLS, and input > >> vectors are VLA ? > >> For eg: > >> arg0, arg1 are type VNx4SI with npatterns = 2, nelts_per_pattern = 3, step > >> = 2 > >> sel is V4SI constant with encoding { 0, 2, 4, ... } > >> and res_type is V4SI. > >> In this case, when it comes to index 4, the vector selection becomes > >> ambiguous, > >> since it can be arg1 for len = 4 + 4x, and arg0 for lengths > 4 + 4x ? > > > > Ah, right. So the condition is whether the result type and the data > > input type have a constant number of elements, rather than just the result. > > Actually, I take that back. The reason: > > >>> The loop that follows will then do the correct thing for each element. > > is true is that: > > + if (!can_div_trunc_p (sel[i], len, &q, &r)) > + { > + if (reason) > + strcpy (reason, "cannot divide selector element by arg len"); > + return NULL_TREE; > + } > > will return false if q isn't computable at compile time (that is, > if we can't decide at compile time which input the element comes from). > > So I think checking the result is enough. Ah yes, thanks for pointing it out! I verified that's indeed the case (test 4 in test_fold_vec_perm_cst::test_mixed in attached patch). Does the attached patch look OK ? Bootstrapped+tested on aarch64-linux-gnu with and without SVE, and on x86_64-linux-gnu.
Thanks, Prathamesh > > Thanks, > Richard
diff --git a/gcc/fold-const.cc b/gcc/fold-const.cc index 7e5494dfd39..680d0e54fd4 100644 --- a/gcc/fold-const.cc +++ b/gcc/fold-const.cc @@ -85,6 +85,10 @@ along with GCC; see the file COPYING3. If not see #include "vec-perm-indices.h" #include "asan.h" #include "gimple-range.h" +#include <algorithm> +#include "tree-pretty-print.h" +#include "gimple-pretty-print.h" +#include "print-tree.h" /* Nonzero if we are folding constants inside an initializer or a C++ manifestly-constant-evaluated context; zero otherwise. @@ -10494,15 +10498,9 @@ fold_mult_zconjz (location_t loc, tree type, tree expr) static bool vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts) { - unsigned HOST_WIDE_INT i, nunits; + unsigned HOST_WIDE_INT i; - if (TREE_CODE (arg) == VECTOR_CST - && VECTOR_CST_NELTS (arg).is_constant (&nunits)) - { - for (i = 0; i < nunits; ++i) - elts[i] = VECTOR_CST_ELT (arg, i); - } - else if (TREE_CODE (arg) == CONSTRUCTOR) + if (TREE_CODE (arg) == CONSTRUCTOR) { constructor_elt *elt; @@ -10520,6 +10518,192 @@ vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts) return true; } +/* Helper routine for fold_vec_perm_cst to check if SEL is a suitable + mask for VLA vec_perm folding. + REASON if specified, will contain the reason why SEL is not suitable. + Used only for debugging and unit-testing. + VERBOSE if enabled is used for debugging output. */ + +static bool +valid_mask_for_fold_vec_perm_cst_p (tree arg0, tree arg1, + const vec_perm_indices &sel, + const char **reason = NULL, + ATTRIBUTE_UNUSED bool verbose = false) +{ + unsigned sel_npatterns = sel.encoding ().npatterns (); + unsigned sel_nelts_per_pattern = sel.encoding ().nelts_per_pattern (); + + if (!(pow2p_hwi (sel_npatterns) + && pow2p_hwi (VECTOR_CST_NPATTERNS (arg0)) + && pow2p_hwi (VECTOR_CST_NPATTERNS (arg1)))) + { + if (reason) + *reason = "npatterns is not power of 2"; + return false; + } + + /* We want to avoid cases where sel.length is not a multiple of npatterns. + For eg: sel.length = 2 + 2x, and sel npatterns = 4. */ + poly_uint64 esel; + if (!multiple_p (sel.length (), sel_npatterns, &esel)) + { + if (reason) + *reason = "sel.length is not multiple of sel_npatterns"; + return false; + } + + if (sel_nelts_per_pattern < 3) + return true; + + for (unsigned pattern = 0; pattern < sel_npatterns; pattern++) + { + poly_uint64 a1 = sel[pattern + sel_npatterns]; + poly_uint64 a2 = sel[pattern + 2 * sel_npatterns]; + HOST_WIDE_INT S; + if (!poly_int64 (a2 - a1).is_constant (&S)) + { + if (reason) + *reason = "step is not constant"; + return false; + } + // FIXME: Punt on S < 0 for now, revisit later. + if (S < 0) + return false; + if (S == 0) + continue; + + if (!pow2p_hwi (S)) + { + if (reason) + *reason = "step is not power of 2"; + return false; + } + + /* Ensure that stepped sequence of the pattern selects elements + only from the same input vector if it's VLA. */ + uint64_t q1, qe; + poly_uint64 r1, re; + poly_uint64 ae = a1 + (esel - 2) * S; + poly_uint64 arg_len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); + + if (!(can_div_trunc_p (a1, arg_len, &q1, &r1) + && can_div_trunc_p (ae, arg_len, &qe, &re) + && q1 == qe)) + { + if (reason) + *reason = "crossed input vectors"; + return false; + } + + unsigned arg_npatterns + = ((q1 & 0) == 0) ? VECTOR_CST_NPATTERNS (arg0) + : VECTOR_CST_NPATTERNS (arg1); + + if (!multiple_p (S, arg_npatterns)) + { + if (reason) + *reason = "S is not multiple of npatterns"; + return false; + } + } + + return true; +} + +/* Try to fold permutation of ARG0 and ARG1 with SEL selector when + the input vectors are VECTOR_CST. Return NULL_TREE otherwise. + REASON and VERBOSE have same purpose as described in + valid_mask_for_fold_vec_perm_cst_p. + + (1) If SEL is a suitable mask as determined by + valid_mask_for_fold_vec_perm_cst_p, then: + res_npatterns = max of npatterns between ARG0, ARG1, and SEL + res_nelts_per_pattern = max of nelts_per_pattern between + ARG0, ARG1 and SEL. + (2) If SEL is not a suitable mask, and ARG0, ARG1 are VLS, + then: + res_npatterns = nelts in input vector. + res_nelts_per_pattern = 1. + This exception is made so that VLS ARG0, ARG1 and SEL work as before. */ + +static tree +fold_vec_perm_cst (tree type, tree arg0, tree arg1, const vec_perm_indices &sel, + const char **reason = NULL, bool verbose = false) +{ + unsigned res_npatterns, res_nelts_per_pattern; + unsigned HOST_WIDE_INT res_nelts; + + if (valid_mask_for_fold_vec_perm_cst_p (arg0, arg1, sel, reason, verbose)) + { + res_npatterns + = std::max (VECTOR_CST_NPATTERNS (arg0), + std::max (VECTOR_CST_NPATTERNS (arg1), + sel.encoding ().npatterns ())); + + res_nelts_per_pattern + = std::max (VECTOR_CST_NELTS_PER_PATTERN (arg0), + std::max (VECTOR_CST_NELTS_PER_PATTERN (arg1), + sel.encoding ().nelts_per_pattern ())); + + res_nelts = res_npatterns * res_nelts_per_pattern; + } + else if (TYPE_VECTOR_SUBPARTS (type).is_constant (&res_nelts)) + { + res_npatterns = res_nelts; + res_nelts_per_pattern = 1; + } + else + return NULL_TREE; + + tree_vector_builder out_elts (type, res_npatterns, res_nelts_per_pattern); + for (unsigned i = 0; i < res_nelts; i++) + { + poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); + uint64_t q; + poly_uint64 r; + unsigned HOST_WIDE_INT index; + + unsigned HOST_WIDE_INT arg_nelts; + if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)).is_constant (&arg_nelts) + && known_ge (sel[i], poly_int64 (2 * arg_nelts))) + { + if (reason) + *reason = "out of bounds access"; + return NULL_TREE; + } + + /* Punt if sel[i] /trunc_div len cannot be determined, + because the input vector to be chosen will depend on + runtime vector length. + For example if len == 4 + 4x, and sel[i] == 4, + If len at runtime equals 4, we choose arg1[0]. + For any other value of len > 4 at runtime, we choose arg0[4]. + which makes the element choice dependent on runtime vector length. */ + if (!can_div_trunc_p (sel[i], len, &q, &r)) + { + if (reason) + *reason = "cannot divide selector element by arg len"; + return NULL_TREE; + } + + /* sel[i] % len will give the index of element in the chosen input + vector. For example if sel[i] == 5 + 4x and len == 4 + 4x, + we will choose arg1[1] since (5 + 4x) % (4 + 4x) == 1. */ + if (!r.is_constant (&index)) + { + if (reason) + *reason = "remainder is not constant"; + return NULL_TREE; + } + + tree arg = ((q & 1) == 0) ? arg0 : arg1; + tree elem = vector_cst_elt (arg, index); + out_elts.quick_push (elem); + } + + return out_elts.build (); +} + /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful, NULL_TREE otherwise. */ @@ -10529,43 +10713,40 @@ fold_vec_perm (tree type, tree arg0, tree arg1, const vec_perm_indices &sel) { unsigned int i; unsigned HOST_WIDE_INT nelts; - bool need_ctor = false; - if (!sel.length ().is_constant (&nelts)) - return NULL_TREE; - gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), nelts) - && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), nelts) - && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), nelts)); + gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), sel.length ()) + && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), + TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))); + if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type) || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type)) return NULL_TREE; + if (TREE_CODE (arg0) == VECTOR_CST + && TREE_CODE (arg1) == VECTOR_CST) + return fold_vec_perm_cst (type, arg0, arg1, sel); + + /* For fall back case, we want to ensure we have VLS vectors + with equal length. */ + if (!sel.length ().is_constant (&nelts)) + return NULL_TREE; + + gcc_assert (known_eq (sel.length (), TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))); tree *in_elts = XALLOCAVEC (tree, nelts * 2); if (!vec_cst_ctor_to_array (arg0, nelts, in_elts) || !vec_cst_ctor_to_array (arg1, nelts, in_elts + nelts)) return NULL_TREE; - tree_vector_builder out_elts (type, nelts, 1); + vec<constructor_elt, va_gc> *v; + vec_alloc (v, nelts); for (i = 0; i < nelts; i++) { HOST_WIDE_INT index; if (!sel[i].is_constant (&index)) return NULL_TREE; - if (!CONSTANT_CLASS_P (in_elts[index])) - need_ctor = true; - out_elts.quick_push (unshare_expr (in_elts[index])); - } - - if (need_ctor) - { - vec<constructor_elt, va_gc> *v; - vec_alloc (v, nelts); - for (i = 0; i < nelts; i++) - CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, out_elts[i]); - return build_constructor (type, v); + CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, in_elts[index]); } - else - return out_elts.build (); + return build_constructor (type, v); } /* Try to fold a pointer difference of type TYPE two address expressions of @@ -16892,6 +17073,508 @@ test_arithmetic_folding () x); } +namespace test_fold_vec_perm_cst { + +static tree +get_preferred_vectype (tree inner_type) +{ + scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (inner_type); + machine_mode vmode = targetm.vectorize.preferred_simd_mode (int_mode); + poly_uint64 nunits = GET_MODE_NUNITS (vmode); + return build_vector_type (inner_type, nunits); +} + +static tree +build_vec_cst_rand (tree inner_type, unsigned npatterns, + unsigned nelts_per_pattern, int S = 0, + tree vectype = NULL_TREE) +{ + if (!vectype) + vectype = get_preferred_vectype (inner_type); + tree_vector_builder builder (vectype, npatterns, nelts_per_pattern); + + // Fill a0 for each pattern + for (unsigned i = 0; i < npatterns; i++) + builder.quick_push (build_int_cst (inner_type, rand () % 100)); + + if (nelts_per_pattern == 1) + return builder.build (); + + // Fill a1 for each pattern + for (unsigned i = 0; i < npatterns; i++) + builder.quick_push (build_int_cst (inner_type, rand () % 100)); + + if (nelts_per_pattern == 2) + return builder.build (); + + for (unsigned i = npatterns * 2; i < npatterns * nelts_per_pattern; i++) + { + tree prev_elem = builder[i - npatterns]; + int prev_elem_val = TREE_INT_CST_LOW (prev_elem); + int val = prev_elem_val + S; + builder.quick_push (build_int_cst (inner_type, val)); + } + + return builder.build (); +} + +static void +validate_res (unsigned npatterns, unsigned nelts_per_pattern, + tree res, tree *expected_res) +{ + ASSERT_TRUE (VECTOR_CST_NPATTERNS (res) == npatterns); + ASSERT_TRUE (VECTOR_CST_NELTS_PER_PATTERN (res) == nelts_per_pattern); + + for (unsigned i = 0; i < vector_cst_encoded_nelts (res); i++) + ASSERT_TRUE (operand_equal_p (VECTOR_CST_ELT (res, i), expected_res[i], 0)); +} + +static void +validate_res_vls (tree res, tree *expected_res, unsigned expected_nelts) +{ + ASSERT_TRUE (known_eq (VECTOR_CST_NELTS (res), expected_nelts)); + for (unsigned i = 0; i < expected_nelts; i++) + ASSERT_TRUE (operand_equal_p (VECTOR_CST_ELT (res, i), expected_res[i], 0)); +} + +/* Verify VLA vec_perm folding. */ + +static void +test_stepped () +{ + /* Case 1: sel = {0, 1, 2, ...} + npatterns = 1, nelts_per_pattern = 3 + expected res: { arg0[0], arg0[1], arg0[2], ... } */ + { + tree arg0 = build_vec_cst_rand (integer_type_node, 1, 3, 2); + tree arg1 = build_vec_cst_rand (integer_type_node, 1, 3, 2); + poly_uint64 arg0_len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); + + vec_perm_builder builder (arg0_len, 1, 3); + builder.quick_push (0); + builder.quick_push (1); + builder.quick_push (2); + + vec_perm_indices sel (builder, 2, arg0_len); + tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel); + tree expected_res[] = { vector_cst_elt (arg0, 0), vector_cst_elt (arg0, 1), + vector_cst_elt (arg0, 2) }; + validate_res (1, 3, res, expected_res); + } + + /* Case 2: sel = {len, len + 1, len + 2, ... } + npatterns = 1, nelts_per_pattern = 3 + FIXME: This should return + expected res: { op1[0], op1[1], op1[2], ... } + however it returns NULL_TREE. */ + { + tree arg0 = build_vec_cst_rand (integer_type_node, 1, 3, 2); + tree arg1 = build_vec_cst_rand (integer_type_node, 1, 3, 2); + poly_uint64 arg0_len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); + + vec_perm_builder builder (arg0_len, 1, 3); + builder.quick_push (arg0_len); + builder.quick_push (arg0_len + 1); + builder.quick_push (arg0_len + 2); + + vec_perm_indices sel (builder, 2, arg0_len); + tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel, NULL, true); + tree expected_res[] = { vector_cst_elt (arg1, 0), vector_cst_elt (arg1, 1), + vector_cst_elt (arg1, 2) }; + validate_res (1, 3, res, expected_res); + } + + /* Case 3: Leading element of arg1, stepped sequence: pattern 0 of arg0. + sel = {len, 0, 0, 0, 2, 0, ...} + npatterns = 2, nelts_per_pattern = 3. + Use extra pattern {0, ...} to lower number of elements per pattern. */ + { + tree arg0 = build_vec_cst_rand (char_type_node, 1, 3, 2); + tree arg1 = build_vec_cst_rand (char_type_node, 1, 3, 2); + poly_uint64 arg0_len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); + + vec_perm_builder builder (arg0_len, 2, 3); + builder.quick_push (arg0_len); + int mask_elems[] = { 0, 0, 0, 2, 0 }; + for (int i = 0; i < 5; i++) + builder.quick_push (mask_elems[i]); + + vec_perm_indices sel (builder, 2, arg0_len); + const char *reason; + tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel, &reason); + + tree expected_res[] = { vector_cst_elt (arg1, 0), vector_cst_elt (arg0, 0), + vector_cst_elt (arg0, 0), vector_cst_elt (arg0, 0), + vector_cst_elt (arg0, 2), vector_cst_elt (arg0, 0) + }; + validate_res (2, 3, res, expected_res); + } + + /* Case 4: + sel = { len, 0, 2, ... } npatterns = 1, nelts_per_pattern = 3. + This should return NULL because we cross the input vectors. + Because, + arg0_len = 16 + 16x + a1 = 0 + S = 2 + esel = arg0_len / npatterns_sel = 16+16x/1 = 16 + 16x + ae = 0 + (esel - 2) * S + = 0 + (16 + 16x - 2) * 2 + = 28 + 32x + a1 / arg0_len = 0 /trunc (16 + 16x) = 0 + ae / arg0_len = (28 + 32x) /trunc (16 + 16x), which is not defined, + since 28/16 != 32/16. + So return NULL_TREE. */ + { + tree arg0 = build_vec_cst_rand (char_type_node, 1, 3, 2); + tree arg1 = build_vec_cst_rand (char_type_node, 1, 3, 2); + poly_uint64 arg0_len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); + + vec_perm_builder builder (arg0_len, 1, 3); + builder.quick_push (arg0_len); + builder.quick_push (0); + builder.quick_push (2); + + vec_perm_indices sel (builder, 2, arg0_len); + const char *reason; + tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel, &reason, false); + gcc_assert (res == NULL_TREE); + gcc_assert (!strcmp (reason, "crossed input vectors")); + } + + /* Case 5: Select elements from different patterns. + Should return NULL. */ + { + tree op0 = build_vec_cst_rand (char_type_node, 2, 3, 2); + tree op1 = build_vec_cst_rand (char_type_node, 2, 3, 2); + poly_uint64 op0_len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (op0)); + + vec_perm_builder builder (op0_len, 2, 3); + builder.quick_push (op0_len); + int mask_elems[] = { 0, 0, 0, 1, 0 }; + for (int i = 0; i < 5; i++) + builder.quick_push (mask_elems[i]); + + vec_perm_indices sel (builder, 2, op0_len); + const char *reason; + tree res = fold_vec_perm_cst (TREE_TYPE (op0), op0, op1, sel, &reason, false); + gcc_assert (res == NULL_TREE); + gcc_assert (!strcmp (reason, "S is not multiple of npatterns")); + } + + /* Case 6: Select pattern 0 of op0 and dup of op0[0] + op0, op1, sel: npatterns = 2, nelts_per_pattern = 3 + sel = { 0, 0, 2, 0, 4, 0, ... }. + + For pattern {0, 2, 4, ...}: + a1 = 2 + len = 16 + 16x + S = 2 + esel = len / npatterns_sel = (16 + 16x) / 2 = (8 + 8x) + ae = a1 + (esel - 2) * S + = 2 + (8 + 8x - 2) * 2 + = 14 + 16x + a1 / arg0_len = 2 / (16 + 16x) = 0 + ae / arg0_len = (14 + 16x) / (16 + 16x) = 0 + So a1/arg0_len = ae/arg0_len = 0 + Hence we select from first vector op0 + S = 2, npatterns = 2. + Since S is multiple of npatterns(op0), we are selecting from + same pattern of op0. + + For pattern {0, ...}, we are choosing { op0[0] ... } + So res will be combination of above patterns: + res: { op0[0], op0[0], op0[2], op0[0], op0[4], op0[0], ... } + with npatterns = 2, nelts_per_pattern = 3. */ + { + tree op0 = build_vec_cst_rand (char_type_node, 2, 3, 2); + tree op1 = build_vec_cst_rand (char_type_node, 2, 3, 2); + poly_uint64 op0_len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (op0)); + + vec_perm_builder builder (op0_len, 2, 3); + int mask_elems[] = { 0, 0, 2, 0, 4, 0 }; + for (int i = 0; i < 6; i++) + builder.quick_push (mask_elems[i]); + + vec_perm_indices sel (builder, 2, op0_len); + tree res = fold_vec_perm_cst (TREE_TYPE (op0), op0, op1, sel); + tree expected_res[] = { vector_cst_elt (op0, 0), vector_cst_elt (op0, 0), + vector_cst_elt (op0, 2), vector_cst_elt (op0, 0), + vector_cst_elt (op0, 4), vector_cst_elt (op0, 0) }; + validate_res (2, 3, res, expected_res); + } + + /* Case 7: sel_npatterns > op_npatterns; + op0, op1: npatterns = 2, nelts_per_pattern = 3 + sel: { 0, 0, 1, len, 2, 0, 3, len, 4, 0, 5, len, ...}, + with npatterns = 4, nelts_per_pattern = 3. */ + { + tree op0 = build_vec_cst_rand (char_type_node, 2, 3, 2); + tree op1 = build_vec_cst_rand (char_type_node, 2, 3, 2); + poly_uint64 op0_len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (op0)); + + vec_perm_builder builder(op0_len, 4, 3); + // -1 is used as place holder for poly_int_cst + int mask_elems[] = { 0, 0, 1, -1, 2, 0, 3, -1, 4, 0, 5, -1 }; + for (int i = 0; i < 12; i++) + builder.quick_push ((mask_elems[i] == -1) ? op0_len : mask_elems[i]); + + vec_perm_indices sel (builder, 2, op0_len); + tree res = fold_vec_perm_cst (TREE_TYPE (op0), op0, op1, sel); + tree expected_res[] = { vector_cst_elt (op0, 0), vector_cst_elt (op0, 0), + vector_cst_elt (op0, 1), vector_cst_elt (op1, 0), + vector_cst_elt (op0, 2), vector_cst_elt (op0, 0), + vector_cst_elt (op0, 3), vector_cst_elt (op1, 0), + vector_cst_elt (op0, 4), vector_cst_elt (op0, 0), + vector_cst_elt (op0, 5), vector_cst_elt (op1, 0) }; + validate_res (4, 3, res, expected_res); + } +} + +static void +test_dup () +{ + /* Case 1: mask = {0, ...} */ + { + tree arg0 = build_vec_cst_rand (integer_type_node, 2, 3, 1); + tree arg1 = build_vec_cst_rand (integer_type_node, 2, 3, 1); + poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); + + vec_perm_builder builder (len, 1, 1); + builder.quick_push (0); + vec_perm_indices sel (builder, 2, len); + tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel); + + tree expected_res[] = { vector_cst_elt (res, 0) }; + validate_res (1, 1, res, expected_res); + } + + /* Case 2: mask = {len, ...} */ + { + tree arg0 = build_vec_cst_rand (integer_type_node, 2, 3, 1); + tree arg1 = build_vec_cst_rand (integer_type_node, 2, 3, 1); + poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); + + vec_perm_builder builder (len, 1, 1); + builder.quick_push (len); + vec_perm_indices sel (builder, 2, len); + tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel); + + tree expected_res[] = { vector_cst_elt (arg1, 0) }; + validate_res (1, 1, res, expected_res); + } + + /* Case 3: mask = { 0, len, ... } */ + { + tree arg0 = build_vec_cst_rand (integer_type_node, 2, 3, 1); + tree arg1 = build_vec_cst_rand (integer_type_node, 2, 3, 1); + poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); + + vec_perm_builder builder (len, 2, 1); + builder.quick_push (0); + builder.quick_push (len); + vec_perm_indices sel (builder, 2, len); + tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel); + + tree expected_res[] = { vector_cst_elt (arg0, 0), vector_cst_elt (arg1, 0) }; + validate_res (2, 1, res, expected_res); + } + + /* Case 4: mask = { 0, len, 1, len+1, ... } */ + { + tree arg0 = build_vec_cst_rand (integer_type_node, 2, 3, 1); + tree arg1 = build_vec_cst_rand (integer_type_node, 2, 3, 1); + poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); + + vec_perm_builder builder (len, 2, 2); + builder.quick_push (0); + builder.quick_push (len); + builder.quick_push (1); + builder.quick_push (len + 1); + vec_perm_indices sel (builder, 2, len); + tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel); + + tree expected_res[] = { vector_cst_elt (arg0, 0), vector_cst_elt (arg1, 0), + vector_cst_elt (arg0, 1), vector_cst_elt (arg1, 1) + }; + validate_res (2, 2, res, expected_res); + } + + /* Case 5: mask = { 0, len, 1, len+1, .... } + npatterns = 4, nelts_per_pattern = 1 */ + { + tree arg0 = build_vec_cst_rand (integer_type_node, 2, 3, 1); + tree arg1 = build_vec_cst_rand (integer_type_node, 2, 3, 1); + poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); + + vec_perm_builder builder (len, 4, 1); + builder.quick_push (0); + builder.quick_push (len); + builder.quick_push (1); + builder.quick_push (len + 1); + vec_perm_indices sel (builder, 2, len); + tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel); + + tree expected_res[] = { vector_cst_elt (arg0, 0), vector_cst_elt (arg1, 0), + vector_cst_elt (arg0, 1), vector_cst_elt (arg1, 1) + }; + validate_res (4, 1, res, expected_res); + } + + /* Case 6: mask = {0, 4, ...} + npatterns = 1, nelts_per_pattern = 2. + This should return NULL_TREE because the index 4 may choose + from either arg0 or arg1 depending on vector length. */ + { + tree arg0 = build_vec_cst_rand (integer_type_node, 2, 3, 1); + tree arg1 = build_vec_cst_rand (integer_type_node, 2, 3, 1); + poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); + + vec_perm_builder builder (len, 1, 2); + builder.quick_push (0); + builder.quick_push (4); + vec_perm_indices sel (builder, 2, len); + tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel); + ASSERT_TRUE (res == NULL_TREE); + } + + /* Case 7: npatterns(arg0) = 4 > npatterns(sel) = 2 + mask = {0, len, 1, len + 1, ...} + sel_npatterns = 2, sel_nelts_per_pattern = 2. */ + { + tree arg0 = build_vec_cst_rand (integer_type_node, 2, 3, 1); + tree arg1 = build_vec_cst_rand (integer_type_node, 2, 3, 1); + poly_uint64 arg0_len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); + + vec_perm_builder builder (arg0_len, 2, 2); + builder.quick_push (0); + builder.quick_push (arg0_len); + builder.quick_push (1); + builder.quick_push (arg0_len + 1); + vec_perm_indices sel (builder, 2, arg0_len); + tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel); + + tree expected_res[] = { vector_cst_elt (arg0, 0), vector_cst_elt (arg1, 0), + vector_cst_elt (arg0, 1), vector_cst_elt (arg1, 1) + }; + validate_res (2, 2, res, expected_res); + } +} + +static void +test_mixed () +{ + /* Case 1: op0, op1 -> VLS, sel -> VLA and selects from both input vectors. + In this case, we treat res_npatterns = nelts in input vector + and res_nelts_per_pattern = 1, and create a dup pattern. + sel = { 0, 4, 1, 5, ... } + res = { op0[0], op1[0], op0[1], op1[1], ...} // (4, 1) + res_npatterns = 4, res_nelts_per_pattern = 1. */ + { + tree arg_vectype = build_vector_type (integer_type_node, 4); + tree arg0 = build_vec_cst_rand (integer_type_node, 4, 1, 0, arg_vectype); + tree arg1 = build_vec_cst_rand (integer_type_node, 4, 1, 0, arg_vectype); + + tree res_type = get_preferred_vectype (integer_type_node); + poly_uint64 res_len = TYPE_VECTOR_SUBPARTS (res_type); + vec_perm_builder builder (res_len, 4, 1); + builder.quick_push (0); + builder.quick_push (4); + builder.quick_push (1); + builder.quick_push (5); + + vec_perm_indices sel (builder, 2, res_len); + tree res = fold_vec_perm_cst (res_type, arg0, arg1, sel); + tree expected_res[] = { vector_cst_elt (arg0, 0), vector_cst_elt (arg1, 0), + vector_cst_elt (arg0, 1), vector_cst_elt (arg1, 1) + }; + validate_res (4, 1, res, expected_res); + } + + /* Case 2: Same as Case 1, but sel contains an out of bounds index. + result should be NULL_TREE. */ + { + tree arg_vectype = build_vector_type (integer_type_node, 4); + tree arg0 = build_vec_cst_rand (integer_type_node, 4, 1, 0, arg_vectype); + tree arg1 = build_vec_cst_rand (integer_type_node, 4, 1, 0, arg_vectype); + + tree res_type = get_preferred_vectype (integer_type_node); + poly_uint64 res_len = TYPE_VECTOR_SUBPARTS (res_type); + vec_perm_builder builder (res_len, 4, 1); + builder.quick_push (0); + builder.quick_push (8); + builder.quick_push (1); + builder.quick_push (5); + + vec_perm_indices sel (builder, 2, res_len); + const char *reason; + tree res = fold_vec_perm_cst (res_type, arg0, arg1, sel, &reason); + gcc_assert (res == NULL_TREE); + gcc_assert (!strcmp (reason, "out of bounds access")); + } + + /* Case 3: op0, op1 are VLA and sel is VLS. + op0, op1: VNx16QI with shape (2, 3) + sel = V4SI with values {0, 2, 4, 6} + res: V4SI with values { op0[0], op0[2], op0[4], op0[6] }. */ + { + tree arg0 = build_vec_cst_rand (char_type_node, 2, 3, 2); + tree arg1 = build_vec_cst_rand (char_type_node, 2, 3, 2); + + poly_uint64 res_len = 4; + tree res_type = build_vector_type (char_type_node, res_len); + vec_perm_builder builder (res_len, 4, 1); + builder.quick_push (0); + builder.quick_push (2); + builder.quick_push (4); + builder.quick_push (6); + + vec_perm_indices sel (builder, 2, res_len); + tree res = fold_vec_perm_cst (res_type, arg0, arg1, sel); + + tree expected_res[] = { vector_cst_elt (arg0, 0), vector_cst_elt (arg0, 2), + vector_cst_elt (arg0, 4), vector_cst_elt (arg0, 6) + }; + validate_res_vls (res, expected_res, 4); + } + + /* Case 4: Same as case 4, but op0, op1 are VNx4SI with shape (2, 3) and step = 2 + sel = V4SI with values {0, 2, 4, 6} + In this case result should be NULL_TREE because we cross input vector + boundary at index 4. */ + { + tree arg0 = build_vec_cst_rand (integer_type_node, 2, 3, 2); + tree arg1 = build_vec_cst_rand (integer_type_node, 2, 3, 2); + + poly_uint64 res_len = 4; + tree res_type = build_vector_type (char_type_node, res_len); + vec_perm_builder builder (res_len, 4, 1); + builder.quick_push (0); + builder.quick_push (2); + builder.quick_push (4); + builder.quick_push (6); + + vec_perm_indices sel (builder, 2, res_len); + const char *reason; + tree res = fold_vec_perm_cst (res_type, arg0, arg1, sel, &reason); + gcc_assert (res == NULL_TREE); + gcc_assert (!strcmp (reason, "cannot divide selector element by arg len")); + } +} + +static void +test () +{ + tree vectype = get_preferred_vectype (integer_type_node); + if (TYPE_VECTOR_SUBPARTS (vectype).is_constant ()) + return; + + test_dup (); + test_stepped (); + test_mixed (); +} +}; + /* Verify that various binary operations on vectors are folded correctly. */ @@ -16943,6 +17626,7 @@ fold_const_cc_tests () test_arithmetic_folding (); test_vector_folding (); test_vec_duplicate_folding (); + test_fold_vec_perm_cst::test (); } } // namespace selftest