Hi All,

This patch adds initial support for early break vectorization in GCC.
The support is added for any target that implements a vector cbranch optab,
this includes both fully masked and non-masked targets.

Depending on the operation, the vectorizer may also require support for boolean
mask reductions using Inclusive OR.  This is however only checked then the
comparison would produce multiple statements.

Concretely the kind of loops supported are of the forms:

 for (int i = 0; i < N; i++)
 {
   <statements1>
   if (<condition>)
     {
       ...
       <action>;
     }
   <statements2>
 }

where <action> can be:
 - break
 - return
 - goto

Any number of statements can be used before the <action> occurs.

Since this is an initial version for GCC 14 it has the following limitations and
features:

- Only fixed sized iterations and buffers are supported.  That is to say any
  vectors loaded or stored must be to statically allocated arrays with known
  sizes. N must also be known.  This limitation is because our primary target
  for this optimization is SVE.  For VLA SVE we can't easily do cross page
  iteraion checks. The result is likely to also not be beneficial. For that
  reason we punt support for variable buffers till we have First-Faulting
  support in GCC.
- any stores in <statements1> should not be to the same objects as in
  <condition>.  Loads are fine as long as they don't have the possibility to
  alias.  More concretely, we block RAW dependencies when the intermediate value
  can't be separated fromt the store, or the store itself can't be moved.
- The number of loop iterations must be known,  this is just a temporarily
  limitation that I intend to address in GCC 14 itself as follow on patches.
- Prologue peeling, alignment peelinig and loop versioning are supported.
- Fully masked loops, unmasked loops and partially masked loops are supported
- Any number of loop early exits are supported.
- The early exit must be before the natural loop exit/latch.  The vectorizer is
  designed in way to propage phi-nodes downwards.  As such supporting this
  inverted control flow is hard.
- No support for epilogue vectorization.  The only epilogue supported is the
  scalar final one.  Epilogue vectorization would also not be profitable.
- Early breaks are only supported for inner loop vectorization.

I have pushed a branch to refs/users/tnfchris/heads/gcc-14-early-break

With the help of IPA and LTO this still gets hit quite often.  During bootstrap
it hit rather frequently.  Additionally TSVC s332, s481 and s482 all pass now
since these are tests for support for early exit vectorization.

This implementation does not support completely handling the early break inside
the vector loop itself but instead supports adding checks such that if we know
that we have to exit in the current iteration then we branch to scalar code to
actually do the final VF iterations which handles all the code in <action>.

niters analysis and the majority of the vectorizer with hardcoded single_exit
have been updated with the use of a new function vec_loop_iv value which returns
the exit the vectorizer wants to use as the main IV exit.

for niters the this exit is what determines the overall iterations as
that is the O(iters) for the loop.

For the scalar loop we know that whatever exit you take you have to perform at
most VF iterations.  For vector code we only case about the state of fully
performed iteration and reset the scalar code to the (partially) remaining loop.

This new version of the patch does the majority of the work in a new rewritten
loop peeling.  This new function maintains LCSSA all the way through and no
longer requires the touch up functions the vectorized used to incrementally
adjust them later on.  This means that aside from IV updates and guard edge
updates the early exit code is identical to the single exit cases.

When the loop is peeled during the copying I have to go through great lengths to
keep the dominators up to date.  All exits from the first loop are rewired to 
the
loop header of the second loop.  But this can change the immediate dominator.

The dominators can change again when we wire in the loop guard, as such peeling
now returns a list of dominators that need to be updated if a new guard edge is
added.

For the loop peeling we rewrite the loop form:


                     Header
                      ---
                      |x|
                       2
                       |
                       v
                -------3<------
     early exit |      |      |
                v      v      | latch
                7      4----->6
                |      |
                |      v
                |      8
                |      |
                |      v
                ------>5

into

                     Header
                      ---
                      |x|
                       2
                       |
                       v
                -------3<------
     early exit |      |      |
                v      v      | latch
                7      4----->6
                |      |
                |      v
                |      8
                |      |
                |      v
                |  New Header
                |     ---
                ----->|x|
                       9
                       |
                       v
                ------10<-----
     early exit |      |      |
                v      v      | latch
                14     11---->13
                |      |
                |      v
                |      12
                |      |
                |      v
                ------> 5

That is to say, the first vector loop executes so long as the early exit isn't
needed.  Once the exit is taken, the scalar code will perform at most VF extra
iterations.  The exact number depending on peeling and iteration start and which
exit was taken (natural or early).   For this scalar loop, all early exits are
treated the same.

When we vectorize we move any statement not related to the early break itself
and that would be incorrect to execute before the break (i.e. has side effects)
to after the break.  If this is not possible we decline to vectorize.

This means that we check at the start of iterations whether we are going to exit
or not.  During the analyis phase we check whether we are allowed to do this
moving of statements.  Also note that we only move the scalar statements, but
only do so after peeling but just before we start transforming statements.

Codegen:

for e.g.

#define N 803
unsigned vect_a[N];
unsigned vect_b[N];

unsigned test4(unsigned x)
{
 unsigned ret = 0;
 for (int i = 0; i < N; i++)
 {
   vect_b[i] = x + i;
   if (vect_a[i] > x)
     break;
   vect_a[i] = x;

 }
 return ret;
}

We generate for Adv. SIMD:

test4:
        adrp    x2, .LC0
        adrp    x3, .LANCHOR0
        dup     v2.4s, w0
        add     x3, x3, :lo12:.LANCHOR0
        movi    v4.4s, 0x4
        add     x4, x3, 3216
        ldr     q1, [x2, #:lo12:.LC0]
        mov     x1, 0
        mov     w2, 0
        .p2align 3,,7
.L3:
        ldr     q0, [x3, x1]
        add     v3.4s, v1.4s, v2.4s
        add     v1.4s, v1.4s, v4.4s
        cmhi    v0.4s, v0.4s, v2.4s
        umaxp   v0.4s, v0.4s, v0.4s
        fmov    x5, d0
        cbnz    x5, .L6
        add     w2, w2, 1
        str     q3, [x1, x4]
        str     q2, [x3, x1]
        add     x1, x1, 16
        cmp     w2, 200
        bne     .L3
        mov     w7, 3
.L2:
        lsl     w2, w2, 2
        add     x5, x3, 3216
        add     w6, w2, w0
        sxtw    x4, w2
        ldr     w1, [x3, x4, lsl 2]
        str     w6, [x5, x4, lsl 2]
        cmp     w0, w1
        bcc     .L4
        add     w1, w2, 1
        str     w0, [x3, x4, lsl 2]
        add     w6, w1, w0
        sxtw    x1, w1
        ldr     w4, [x3, x1, lsl 2]
        str     w6, [x5, x1, lsl 2]
        cmp     w0, w4
        bcc     .L4
        add     w4, w2, 2
        str     w0, [x3, x1, lsl 2]
        sxtw    x1, w4
        add     w6, w1, w0
        ldr     w4, [x3, x1, lsl 2]
        str     w6, [x5, x1, lsl 2]
        cmp     w0, w4
        bcc     .L4
        str     w0, [x3, x1, lsl 2]
        add     w2, w2, 3
        cmp     w7, 3
        beq     .L4
        sxtw    x1, w2
        add     w2, w2, w0
        ldr     w4, [x3, x1, lsl 2]
        str     w2, [x5, x1, lsl 2]
        cmp     w0, w4
        bcc     .L4
        str     w0, [x3, x1, lsl 2]
.L4:
        mov     w0, 0
        ret
        .p2align 2,,3
.L6:
        mov     w7, 4
        b       .L2

and for SVE:

test4:
        adrp    x2, .LANCHOR0
        add     x2, x2, :lo12:.LANCHOR0
        add     x5, x2, 3216
        mov     x3, 0
        mov     w1, 0
        cntw    x4
        mov     z1.s, w0
        index   z0.s, #0, #1
        ptrue   p1.b, all
        ptrue   p0.s, all
        .p2align 3,,7
.L3:
        ld1w    z2.s, p1/z, [x2, x3, lsl 2]
        add     z3.s, z0.s, z1.s
        cmplo   p2.s, p0/z, z1.s, z2.s
        b.any   .L2
        st1w    z3.s, p1, [x5, x3, lsl 2]
        add     w1, w1, 1
        st1w    z1.s, p1, [x2, x3, lsl 2]
        add     x3, x3, x4
        incw    z0.s
        cmp     w3, 803
        bls     .L3
.L5:
        mov     w0, 0
        ret
        .p2align 2,,3
.L2:
        cntw    x5
        mul     w1, w1, w5
        cbz     w5, .L5
        sxtw    x1, w1
        sub     w5, w5, #1
        add     x5, x5, x1
        add     x6, x2, 3216
        b       .L6
        .p2align 2,,3
.L14:
        str     w0, [x2, x1, lsl 2]
        cmp     x1, x5
        beq     .L5
        mov     x1, x4
.L6:
        ldr     w3, [x2, x1, lsl 2]
        add     w4, w0, w1
        str     w4, [x6, x1, lsl 2]
        add     x4, x1, 1
        cmp     w0, w3
        bcs     .L14
        mov     w0, 0
        ret

On the workloads this work is based on we see between 2-3x performance uplift
using this patch.

Follow up plan:
 - Boolean vectorization has several shortcomings.  I've filed PR110223 with the
   bigger ones that cause vectorization to fail with this patch.
 - SLP support.  This is planned for GCC 15 as for majority of the cases build
   SLP itself fails.  This means I'll need to spend time in making this more
   robust first.  Additionally it requires:
     * Adding support for vectorizing CFG (gconds)
     * Support for CFG to differ between vector and scalar loops.
   Both of which would be disruptive to the tree and I suspect I'll be handling
   fallouts from this patch for a while.  So I plan to work on the surrounding
   building blocks first for the remainder of the year.

Bootstrapped Regtested on aarch64-none-linux-gnu and no issues.
Also ran across various workloads and no issues.

When closer to acceptance I will run on other targets as well and clean up
related testsuite fallouts there.

--- inline copy of patch -- 

-- 


Reply via email to