On Thu, May 11, 2023 at 12:13 PM Cui, Lili via Gcc-patches <gcc-patches@gcc.gnu.org> wrote: > > From: Lili Cui <lili....@intel.com> > > Hi, > > Those two patches each add a param to control the length of the chain with > FMA in reassoc pass and a tuning option in the backend. > > Bootstrapped and regtested. Ok for trunk? > > Regards > Lili. > > Add a param for the chain with FMA in reassoc pass to make it more friendly to > the fma pass later. First to detect if this chain has ability to > generate more than 2 FMAs,if yes and param_reassoc_max_chain_length_with_fma > is enabled, We will rearrange the ops so that they can be combined into more > FMAs. When the chain length exceeds param_reassoc_max_chain_length_with_fma, > build parallel chains according to given association width and try to keep FMA > opportunity as much as possible. > > TEST1: > > float > foo (float a, float b, float c, float d, float *e) > { > return *e + a * b + c * d ; > } > > For -Ofast -march=icelake-server GCC generates: > vmulss %xmm3, %xmm2, %xmm2 > vfmadd132ss %xmm1, %xmm2, %xmm0 > vaddss (%rdi), %xmm0, %xmm0 > ret > > with "--param=reassoc-max-chain-length-with-fma=3" GCC generates: > vfmadd213ss (%rdi), %xmm1, %xmm0 > vfmadd231ss %xmm2, %xmm3, %xmm0 > ret > > gcc/ChangeLog: > > PR gcc/98350 > * params.opt (reassoc-max-fma-chain-length): New param. > * tree-ssa-reassoc.cc > (rewrite_expr_tree_parallel_for_fma): New. > (rank_ops_for_fma): Ditto. > (reassociate_bb): Handle new function. > > gcc/testsuite/ChangeLog: > > PR gcc/98350 > * gcc.dg/pr98350-1.c: New test. > * gcc.dg/pr98350-2.c: Ditto. > --- > gcc/params.opt | 4 + > gcc/testsuite/gcc.dg/pr98350-1.c | 31 +++++ > gcc/testsuite/gcc.dg/pr98350-2.c | 17 +++ > gcc/tree-ssa-reassoc.cc | 228 ++++++++++++++++++++++++++++--- > 4 files changed, 264 insertions(+), 16 deletions(-) > create mode 100644 gcc/testsuite/gcc.dg/pr98350-1.c > create mode 100644 gcc/testsuite/gcc.dg/pr98350-2.c > > diff --git a/gcc/params.opt b/gcc/params.opt > index 823cdb2ff85..f7c719afe64 100644 > --- a/gcc/params.opt > +++ b/gcc/params.opt > @@ -1182,4 +1182,8 @@ The maximum factor which the loop vectorizer applies to > the cost of statements i > Common Joined UInteger Var(param_vect_induction_float) Init(1) > IntegerRange(0, 1) Param Optimization > Enable loop vectorization of floating point inductions. > > +-param=reassoc-max-chain-length-with-fma= > +Common Joined UInteger Var(param_reassoc_max_chain_length_with_fma) Init(1) > IntegerRange(1, 65536) Param Optimization > +The maximum chain length with fma considered in reassociation pass. > + > ; This comment is to ensure we retain the blank line above. > diff --git a/gcc/testsuite/gcc.dg/pr98350-1.c > b/gcc/testsuite/gcc.dg/pr98350-1.c > new file mode 100644 > index 00000000000..32ecce13a2d > --- /dev/null > +++ b/gcc/testsuite/gcc.dg/pr98350-1.c > @@ -0,0 +1,31 @@ > +/* { dg-do compile } */ > +/* { dg-options "-Ofast -mfpmath=sse -mfma > --param=reassoc-max-chain-length-with-fma=7 -Wno-attributes " } */ > + > +/* Test that the compiler properly optimizes multiply and add > + to generate more FMA instructions. */ > +#define N 1024 > +double a[N]; > +double b[N]; > +double c[N]; > +double d[N]; > +double e[N]; > +double f[N]; > +double g[N]; > +double h[N]; > +double j[N]; > +double k[N]; > +double l[N]; > +double m[N]; > +double o[N]; > +double p[N]; > + > + > +void > +foo (void) > +{ > + for (int i = 0; i < N; i++) > + { > + a[i] += b[i] * c[i] + d[i] * e[i] + f[i] * g[i] + h[i] * j[i] + k[i] * > l[i] + m[i]* o[i] + p[i]; > + } > +} > +/* { dg-final { scan-assembler-times "vfm" 6 } } */ > diff --git a/gcc/testsuite/gcc.dg/pr98350-2.c > b/gcc/testsuite/gcc.dg/pr98350-2.c > new file mode 100644 > index 00000000000..246025d43b8 > --- /dev/null > +++ b/gcc/testsuite/gcc.dg/pr98350-2.c > @@ -0,0 +1,17 @@ > +/* { dg-do compile } */ > +/* { dg-options "-Ofast -mfpmath=sse -mfma > --param=reassoc-max-chain-length-with-fma=6 -Wno-attributes " } */ > + > +/* Test that the compiler properly build parallel chains according to given > + association width and try to keep FMA opportunity as much as possible. */ > +#define N 33 > +double a[N]; > + > +void > +foo (void) > +{ > + a[32] = a[0] *a[1] + a[2] * a[3] + a[4] * a[5] + a[6] * a[7] + a[8] * a[9] > + + a[10] * a[11] + a[12] * a[13] + a[14] * a[15] + a[16] * a[17] > + + a[18] * a[19] + a[20] * a[21] + a[22] * a[23] + a[24] + a[25] > + + a[26] + a[27] + a[28] + a[29] + a[30] + a[31]; > +} > +/* { dg-final { scan-assembler-times "vfm" 12 } } */ > diff --git a/gcc/tree-ssa-reassoc.cc b/gcc/tree-ssa-reassoc.cc > index 067a3f07f7e..6d2e158c4f5 100644 > --- a/gcc/tree-ssa-reassoc.cc > +++ b/gcc/tree-ssa-reassoc.cc > @@ -54,6 +54,7 @@ along with GCC; see the file COPYING3. If not see > #include "tree-ssa-reassoc.h" > #include "tree-ssa-math-opts.h" > #include "gimple-range.h" > +#include "internal-fn.h" > > /* This is a simple global reassociation pass. It is, in part, based > on the LLVM pass of the same name (They do some things more/less > @@ -5468,6 +5469,114 @@ get_reassociation_width (int ops_num, enum tree_code > opc, > return width; > } > > +/* Rewrite statements with dependency chain with regard to the chance to > + generate FMA. When the dependency chain length exceeds > + param_max_reassoc_chain_length_with_fma, build parallel chains according > to > + given association width and try to keep fma opportunity as much as > possible. > + E.g. > + e + f + g + a * b + c * d; > + > + ssa1 = e + f; > + ssa2 = g + a * b; > + ssa3 = ssa1 + c * d; > + ssa4 = ssa2 + ssa3; > + > + This reassociation approach preserves the chance of fma generation as much > + as possible. */ > +static void > +rewrite_expr_tree_parallel_for_fma (gassign *stmt, int width, > + const vec<operand_entry *> &ops) > +{ > + enum tree_code opcode = gimple_assign_rhs_code (stmt); > + int op_num = ops.length (); > + gcc_assert (op_num > 0); > + int stmt_num = op_num - 1; > + gimple **stmts = XALLOCAVEC (gimple *, stmt_num); > + int op_index = op_num - 1; > + int width_count = width; > + int i = 0, j = 0; > + tree tmp_op[2], op1; > + operand_entry *oe; > + gimple *stmt1 = NULL; > + tree last_rhs1 = gimple_assign_rhs1 (stmt); > + > + /* We start expression rewriting from the top statements. > + So, in this loop we create a full list of statements > + we will work with. */ > + stmts[stmt_num - 1] = stmt; > + for (i = stmt_num - 2; i >= 0; i--) > + stmts[i] = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmts[i+1])); > + > + /* Build parallel FMA dependency chain according to width. */ > + for (i = 0; i < width; i++) > + { > + for (j = 0; j < 2; j++) > + { > + oe = ops[op_index--]; > + tmp_op[j] = oe->op; > + stmt1 = oe->stmt_to_insert; > + if (stmt1) > + insert_stmt_before_use (stmts[i], stmt1); > + stmt1 = NULL; > + } > + stmts[i] = build_and_add_sum (TREE_TYPE (last_rhs1), tmp_op[1], > tmp_op[0], opcode); > + gimple_set_visited (stmts[i], true); > + > + if (dump_file && (dump_flags & TDF_DETAILS)) > + { > + fprintf (dump_file, " into "); > + print_gimple_stmt (dump_file, stmts[i], 0); > + } > + } > + > + for (i = width; i < stmt_num; i++) > + { > + /* We keep original statement only for the last one. All others are > + recreated. */ > + if ( op_index < 0) > + { > + if (width_count == 2) > + { > + > + gimple_assign_set_rhs1 (stmts[i], gimple_assign_lhs > (stmts[i-1])); > + gimple_assign_set_rhs2 (stmts[i], gimple_assign_lhs > (stmts[i-2])); > + } > + else > + { > + > + stmts[i] = > + build_and_add_sum (TREE_TYPE (last_rhs1), > + gimple_assign_lhs (stmts[i-width_count]), > + gimple_assign_lhs (stmts[i-width_count+1]), > + opcode); > + width_count--; > + } > + update_stmt (stmts[i]); > + } > + else > + { > + oe = ops[op_index--]; > + op1 = oe->op; > + stmt1 = oe->stmt_to_insert; > + if (stmt1) > + insert_stmt_before_use (stmts[i], stmt1); > + stmt1 = NULL; > + stmts[i] = build_and_add_sum (TREE_TYPE (last_rhs1), > + gimple_assign_lhs (stmts[i-width]), > + op1, > + opcode); > + gimple_set_visited (stmts[i], true); > + } > + > + if (dump_file && (dump_flags & TDF_DETAILS)) > + { > + fprintf (dump_file, " into "); > + print_gimple_stmt (dump_file, stmts[i], 0); > + } > + } > + remove_visited_stmt_chain (last_rhs1); > +} > + > /* Recursively rewrite our linearized statements so that the operators > match those in OPS[OPINDEX], putting the computation in rank > order and trying to allow operations to be executed in > @@ -6649,6 +6758,64 @@ transform_stmt_to_multiply (gimple_stmt_iterator *gsi, > gimple *stmt, > } > } > > +/* Rearrange ops to generate more FMA when the chain may has more than 2 > fmas. > + Putting ops that not def from mult in front can generate more fma. > + E.g. > + a * b + c * d + e generates: > + > + _4 = c_9(D) * d_10(D); > + _12 = .FMA (a_7(D), b_8(D), _4); > + _11 = e_6(D) + _12; > + > + Rtearrange ops to -> e + a * b + c * d generates: > + > + _4 = .FMA (c_7(D), d_8(D), _3); > + _11 = .FMA (a_5(D), b_6(D), _4); > + */ > +static bool > +rank_ops_for_fma (vec<operand_entry *> *ops) > +{ > + operand_entry *oe; > + unsigned int i; > + auto_vec<operand_entry *> ops_mult; > + auto_vec<operand_entry *> ops_others; > + > + FOR_EACH_VEC_ELT (*ops, i, oe) > + { > + if (TREE_CODE (oe->op) == SSA_NAME) > + { > + gimple *def_stmt = SSA_NAME_DEF_STMT (oe->op); > + if (is_gimple_assign (def_stmt) > + && gimple_assign_rhs_code (def_stmt) == MULT_EXPR) > + ops_mult.safe_push (oe); > + else > + ops_others.safe_push (oe); > + } > + else > + ops_others.safe_push (oe); > + } > + /* When ops_mult.length == 2, like the following case, > + > + a * b + c * d + e. > + > + we need to rearrange the ops. > + > + Putting ops that not def from mult in front can generate more fmas. */ > + if (ops_mult.length () >= 2) > + { > + /* If all ops are defined with mult, we don't need to rearrange them. > */ > + if (ops_mult.length () != ops->length ()) > + { > + ops->truncate (0); > + FOR_EACH_VEC_ELT (ops_mult, i, oe) > + ops->safe_push (oe);
As you are not changing the number of ops you should be able to use quick_push here and below. You should be able to do ops->splice (ops_mult); ops->splice (ops_others); as well. > + FOR_EACH_VEC_ELT (ops_others, i, oe) > + ops->safe_push (oe); > + } > + return true; > + } > + return false; > +} > /* Reassociate expressions in basic block BB and its post-dominator as > children. > > @@ -6813,6 +6980,7 @@ reassociate_bb (basic_block bb) > machine_mode mode = TYPE_MODE (TREE_TYPE (lhs)); > int ops_num = ops.length (); > int width; > + bool keep_fma_chain = false; > > /* For binary bit operations, if there are at least 3 > operands and the last operand in OPS is a constant, > @@ -6826,36 +6994,64 @@ reassociate_bb (basic_block bb) > && TREE_CODE (ops.last ()->op) == INTEGER_CST) > std::swap (*ops[0], *ops[ops_num - 1]); > > + optimization_type opt_type = bb_optimization_type (bb); > + > + /* When enabling param_reassoc_max_chain_length_with_fma to > + keep the chain with fma, rank_ops_for_fma will detect if > + the chain has fmas and if so it will rearrange the ops. > */ > + if (param_reassoc_max_chain_length_with_fma > 1 > + && direct_internal_fn_supported_p (IFN_FMA, > + TREE_TYPE (lhs), > + opt_type) > + && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR)) > + { > + keep_fma_chain = rank_ops_for_fma(&ops); > + } > + > + int len = ops.length (); > /* Only rewrite the expression tree to parallel in the > last reassoc pass to avoid useless work back-and-forth > with initial linearization. */ we are doing the parallel rewrite only in the last reassoc pass, i think it makes sense to do the same for reassoc-for-fma. Why do the existing expr rewrites not work after re-sorting the ops? > if (!reassoc_insert_powi_p > - && ops.length () > 3 > + && len > 3 > + && (!keep_fma_chain > + || (keep_fma_chain > + && len > > param_reassoc_max_chain_length_with_fma)) in the case len < param_reassoc_max_chain_length_with_fma we have the chain re-sorted but fall through to non-parallel rewrite. I wonder if we do not want to instead adjust the reassociation width? I'd say it depends on the number of mult cases in the chain (sth the re-sorting could have computed). Why do we have two completely independent --params here? Can you give an example --param value combination that makes "sense" and show how it is beneficial? > && (width = get_reassociation_width (ops_num, rhs_code, > - mode)) > 1) > + mode)) > 1) > { > - if (dump_file && (dump_flags & TDF_DETAILS)) > - fprintf (dump_file, > - "Width = %d was chosen for reassociation\n", > - width); > - rewrite_expr_tree_parallel (as_a <gassign *> (stmt), > - width, ops); > + if (keep_fma_chain) > + { > + if (dump_file && (dump_flags & TDF_DETAILS)) > + fprintf (dump_file, > + "Break chain len = %d into width for > FMA\n", > + len); > + rewrite_expr_tree_parallel_for_fma > + (as_a <gassign *> (stmt), width, ops); > + } > + else > + { > + if (dump_file && (dump_flags & TDF_DETAILS)) > + fprintf (dump_file, > + "Width = %d was chosen for > reassociation\n", > + width); > + rewrite_expr_tree_parallel (as_a <gassign *> (stmt), > + width, ops); > + } > } > else > - { > - /* When there are three operands left, we want > - to make sure the ones that get the double > - binary op are chosen wisely. */ > - int len = ops.length (); > - if (len >= 3) > + { > + /* When there are three operands left, we want > + to make sure the ones that get the double > + binary op are chosen wisely. */ > + if (len >= 3 && !keep_fma_chain) > swap_ops_for_binary_stmt (ops, len - 3); > > new_lhs = rewrite_expr_tree (stmt, rhs_code, 0, ops, > powi_result != NULL > || negate_result, > len != orig_len); > - } > - > + } > /* If we combined some repeated factors into a > __builtin_powi call, multiply that result by the > reassociated operands. */ > -- > 2.25.1 >