2023-05-05 Jakub Jelinek <ja...@redhat.com>
* real.h (dconst_pi): Define.
(dconst_e_ptr): Formatting fix.
(dconst_pi_ptr): Declare.
* real.cc (dconst_pi_ptr): New function.
* gimple-range-op.cc (cfn_sincos::fold_range): Intersect the generic
boundaries range with range computed from sin/cos of the particular
bounds if the argument range is shorter than 2*pi.
(cfn_sincos::op1_range): Take bulps into account when determining
which result ranges are always invalid or behave like known NAN.
* gcc.dg/tree-ssa/range-sincos-2.c: New test.
--- gcc/real.h.jj 2023-04-19 09:33:59.434350121 +0200
+++ gcc/real.h 2023-05-05 16:36:35.606611170 +0200
@@ -480,9 +480,13 @@ extern REAL_VALUE_TYPE dconstninf;
#define dconst_sixth() (*dconst_sixth_ptr ())
#define dconst_ninth() (*dconst_ninth_ptr ())
#define dconst_sqrt2() (*dconst_sqrt2_ptr ())
+#define dconst_pi() (*dconst_pi_ptr ())
/* Function to return the real value special constant 'e'. */
-extern const REAL_VALUE_TYPE * dconst_e_ptr (void);
+extern const REAL_VALUE_TYPE *dconst_e_ptr (void);
+
+/* Function to return the real value special constant 'pi'. */
+extern const REAL_VALUE_TYPE *dconst_pi_ptr (void);
/* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */
extern const REAL_VALUE_TYPE *dconst_third_ptr (void);
--- gcc/real.cc.jj 2023-04-20 09:36:09.066376175 +0200
+++ gcc/real.cc 2023-05-05 16:39:25.244201299 +0200
@@ -2475,6 +2475,26 @@ dconst_e_ptr (void)
return &value;
}
+/* Returns the special REAL_VALUE_TYPE corresponding to 'pi'. */
+
+const REAL_VALUE_TYPE *
+dconst_pi_ptr (void)
+{
+ static REAL_VALUE_TYPE value;
+
+ /* Initialize mathematical constants for constant folding builtins.
+ These constants need to be given to at least 160 bits precision. */
+ if (value.cl == rvc_zero)
+ {
+ auto_mpfr m (SIGNIFICAND_BITS);
+ mpfr_set_si (m, -1, MPFR_RNDN);
+ mpfr_acos (m, m, MPFR_RNDN);
+ real_from_mpfr (&value, m, NULL_TREE, MPFR_RNDN);
+
+ }
+ return &value;
+}
+
/* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */
#define CACHED_FRACTION(NAME, N) \
--- gcc/gimple-range-op.cc.jj 2023-05-05 16:02:48.174419009 +0200
+++ gcc/gimple-range-op.cc 2023-05-05 19:44:27.292304968 +0200
@@ -633,6 +633,98 @@ public:
}
if (!lh.maybe_isnan () && !lh.maybe_isinf ())
r.clear_nan ();
+
+ unsigned ulps
+ = targetm.libm_function_max_error (m_cfn, TYPE_MODE (type), false);
+ if (ulps == ~0U)
+ return true;
+ REAL_VALUE_TYPE lb = lh.lower_bound ();
+ REAL_VALUE_TYPE ub = lh.upper_bound ();
+ REAL_VALUE_TYPE diff;
+ real_arithmetic (&diff, MINUS_EXPR, &ub, &lb);
+ if (!real_isfinite (&diff))
+ return true;
+ REAL_VALUE_TYPE pi = dconst_pi ();
+ REAL_VALUE_TYPE pix2;
+ real_arithmetic (&pix2, PLUS_EXPR, &pi, &pi);
+ // We can only try to narrow the range further if ub-lb < 2*pi.
+ if (!real_less (&diff, &pix2))
+ return true;
+ REAL_VALUE_TYPE lb_lo, lb_hi, ub_lo, ub_hi;
+ REAL_VALUE_TYPE lb_deriv_lo, lb_deriv_hi, ub_deriv_lo, ub_deriv_hi;
+ if (!frange_mpfr_arg1 (&lb_lo, &lb_hi,
+ m_cfn == CFN_SIN ? mpfr_sin : mpfr_cos, lb,
+ type, ulps)
+ || !frange_mpfr_arg1 (&ub_lo, &ub_hi,
+ m_cfn == CFN_SIN ? mpfr_sin : mpfr_cos, ub,
+ type, ulps)
+ || !frange_mpfr_arg1 (&lb_deriv_lo, &lb_deriv_hi,
+ m_cfn == CFN_SIN ? mpfr_cos : mpfr_sin, lb,
+ type, 0)
+ || !frange_mpfr_arg1 (&ub_deriv_lo, &ub_deriv_hi,
+ m_cfn == CFN_SIN ? mpfr_cos : mpfr_sin, ub,
+ type, 0))
+ return true;
+ if (m_cfn == CFN_COS)
+ {
+ // Derivative of cos is -sin, so negate.
+ lb_deriv_lo.sign ^= 1;
+ lb_deriv_hi.sign ^= 1;
+ ub_deriv_lo.sign ^= 1;
+ ub_deriv_hi.sign ^= 1;
+ }
+
+ if (real_less (&lb_lo, &ub_lo))
+ lb = lb_lo;
+ else
+ lb = ub_lo;
+ if (real_less (&lb_hi, &ub_hi))
+ ub = ub_hi;
+ else
+ ub = lb_hi;
+
+ // The range between the function result on the boundaries may need
+ // to be extended to +1 (+Inf) or -1 (-Inf) or both depending on the
+ // derivative or length of the argument range (diff).
+
+ // First handle special case, where the derivative has different signs,
+ // so the bound must be roughly -1 or +1.
+ if (real_isneg (&lb_deriv_lo) != real_isneg (&lb_deriv_hi))
+ {
+ if (real_isneg (&lb_lo))
+ lb = dconstninf;
+ else
+ ub = dconstinf;
+ }
+ if (real_isneg (&ub_deriv_lo) != real_isneg (&ub_deriv_hi))
+ {
+ if (real_isneg (&ub_lo))
+ lb = dconstninf;
+ else
+ ub = dconstinf;
+ }
+
+ // If derivative at lower_bound and upper_bound have the same sign,
+ // the function grows or declines on the whole range if diff < pi, so
+ // [lb, ub] is correct, and if diff >= pi the result range must include
+ // both the minimum and maximum.
+ if (real_isneg (&lb_deriv_lo) == real_isneg (&ub_deriv_lo))
+ {
+ if (!real_less (&diff, &pi))
+ return true;
+ }
+ // If function declines at lower_bound and grows at upper_bound,
+ // the result range must include the minimum, so set lb to -Inf.
+ else if (real_isneg (&lb_deriv_lo))
+ lb = dconstninf;
+ // If function grows at lower_bound and declines at upper_bound,
+ // the result range must include the maximum, so set ub to +Inf.
+ else
+ ub = dconstinf;
+ frange r2;
+ r2.set (type, lb, ub);
+ r2.flush_denormals_to_zero ();
+ r.intersect (r2);
return true;
}
virtual bool op1_range (frange &r, tree type,
@@ -651,31 +743,42 @@ public:
}
// Results outside of [-1.0, +1.0] are impossible.
- REAL_VALUE_TYPE lb = lhs.lower_bound ();
- REAL_VALUE_TYPE ub = lhs.upper_bound ();
- if (real_less (&ub, &dconstm1) || real_less (&dconst1, &lb))
+ unsigned bulps
+ = targetm.libm_function_max_error (m_cfn, TYPE_MODE (type), true);
+ if (bulps != ~0U)
{
- if (!lhs.maybe_isnan ())
- r.set_undefined ();
- else
- /* If lhs could be NAN and finite result is impossible,
- the range is like lhs.known_isnan () above,
- [-INF,-INF][+INF,+INF] U +-NAN. */
- r.set_varying (type);
- return true;
+ const REAL_VALUE_TYPE &lb = lhs.lower_bound ();
+ const REAL_VALUE_TYPE &ub = lhs.upper_bound ();
+ REAL_VALUE_TYPE m1 = dconstm1;
+ REAL_VALUE_TYPE p1 = dconst1;
+ while (bulps--)
+ {
+ frange_nextafter (TYPE_MODE (type), m1, dconstninf);
+ frange_nextafter (TYPE_MODE (type), p1, dconstinf);
+ }
+ if (real_less (&ub, &m1) || real_less (&p1, &lb))
+ {
+ if (!lhs.maybe_isnan ())
+ r.set_undefined ();
+ else
+ /* If lhs could be NAN and finite result is impossible,
+ the range is like lhs.known_isnan () above,
+ [-INF,-INF][+INF,+INF] U +-NAN. */
+ r.set_varying (type);
+ return true;
+ }
}
if (!lhs.maybe_isnan ())
{
// If NAN is not valid result, the input cannot include either
// a NAN nor a +-INF.
- lb = real_min_representable (type);
- ub = real_max_representable (type);
+ REAL_VALUE_TYPE lb = real_min_representable (type);
+ REAL_VALUE_TYPE ub = real_max_representable (type);
r.set (type, lb, ub, nan_state (false, false));
- return true;
}
-
- r.set_varying (type);
+ else
+ r.set_varying (type);
return true;
}
private:
--- gcc/testsuite/gcc.dg/tree-ssa/range-sincos-2.c.jj 2023-05-05
19:54:11.705064161 +0200
+++ gcc/testsuite/gcc.dg/tree-ssa/range-sincos-2.c 2023-05-05
20:13:11.859961631 +0200
@@ -0,0 +1,34 @@
+// { dg-do compile }
+// { dg-options "-O2 -fdump-tree-evrp -fno-thread-jumps" }
+
+void use (double);
+void link_error ();
+
+void
+foo (double x)
+{
+ double y;
+ if (x >= 0.5 && x <= 1.3)
+ {
+ y = __builtin_sin (x);
+ if (y < 0.45 || y > 0.97)
+ link_error ();
+ use (y);
+ }
+ if (x >= 0.5 && x < 1.75)
+ {
+ y = __builtin_sin (x);
+ if (y < 0.45 || y > 1.05)
+ link_error ();
+ use (y);
+ }
+ if (x >= -1.57 && x <= 1.57)
+ {
+ y = __builtin_cos (x);
+ if (y < 0.0007 || y > 1.05)
+ link_error ();
+ use (y);
+ }
+}
+
+// { dg-final { scan-tree-dump-not "link_error" "evrp" { target { { *-*-linux* }
&& { glibc } } } } }
Jakub