eBPF effectively supports two kind of call instructions:
- The so called pseudo-calls ("bpf to bpf"). - External calls ("bpf to kernel"). The BPF call instruction always gets an immediate argument, whose interpretation varies depending on the purpose of the instruction: - For pseudo-calls, the immediate argument is interpreted as a 32-bit PC-relative displacement measured in number of 64-bit words minus one. - For external calls, the immediate argument is interpreted as the identification of a kernel helper. In order to differenciate both flavors of CALL instructions the SRC field of the instruction (otherwise unused) is abused as an opcode; if the field holds 0 the instruction is an external call, if it holds BPF_PSEUDO_CALL the instruction is a pseudo-call. C-to-BPF toolchains, including the GNU toolchain, use the following practical heuristic at assembly time in order to determine what kind of CALL instruction to generate: call instructions requiring a fixup at assembly time are interpreted as pseudo-calls. This means that in practice a call instruction involving symbols at assembly time (such as `call foo') is assembled into a pseudo-call instruction, whereas something like `call 12' is assembled into an external call instruction. In both cases, the argument of CALL is an immediate: at the time of writing eBPF lacks support for indirect calls, i.e. there is no call-to-register instruction. This is the reason why BPF programs, in practice, rely on certain optimizations to happen in order to generate calls to immediates. This is a typical example involving a kernel helper: static void * (*bpf_map_lookup_elem)(void *map, const void *key) = (void *) 1; int foo (...) { char *ret; ret = bpf_map_lookup_elem (args...); if (ret) return 1; return 0; } Note how the code above relies on the compiler to do constant propagation so the call to bpf_map_lookup_elem can be compiled to a `call 1' instruction. While GCC provides a kernel_helper function declaration attribute that can be used in a robust way to tell GCC to generate an external call despite of optimization level and any other consideration, the Linux kernel bpf_helpers.h file relies on tricks like the above. This patch modifies the BPF backend to avoid SSA sparse constant propagation to be "undone" by the expander loading the function address into a register. A new test is also added. Tested in bpf-unknown-linux-gnu. No regressions. gcc/ChangeLog: PR target/106733 * config/bpf/bpf.cc (bpf_legitimate_address_p): Recognize integer constants as legitimate addresses for functions. (bpf_small_register_classes_for_mode_p): Define target hook. gcc/testsuite/ChangeLog: PR target/106733 * gcc.target/bpf/constant-calls.c: Rename to ... * gcc.target/bpf/constant-calls-1.c: and modify to not expect failure anymore. * gcc.target/bpf/constant-calls-2.c: New test. --- gcc/config/bpf/bpf.cc | 21 ++++++++++++++++++- .../{constant-calls.c => constant-calls-1.c} | 1 - .../gcc.target/bpf/constant-calls-2.c | 16 ++++++++++++++ 3 files changed, 36 insertions(+), 2 deletions(-) rename gcc/testsuite/gcc.target/bpf/{constant-calls.c => constant-calls-1.c} (88%) create mode 100644 gcc/testsuite/gcc.target/bpf/constant-calls-2.c diff --git a/gcc/config/bpf/bpf.cc b/gcc/config/bpf/bpf.cc index 6a0e3bbca9e..7e37e080808 100644 --- a/gcc/config/bpf/bpf.cc +++ b/gcc/config/bpf/bpf.cc @@ -659,12 +659,15 @@ bpf_address_base_p (rtx x, bool strict) target machine for a memory operand of mode MODE. */ static bool -bpf_legitimate_address_p (machine_mode mode ATTRIBUTE_UNUSED, +bpf_legitimate_address_p (machine_mode mode, rtx x, bool strict) { switch (GET_CODE (x)) { + case CONST_INT: + return (mode == FUNCTION_MODE); + case REG: return bpf_address_base_p (x, strict); @@ -1311,6 +1314,22 @@ bpf_core_walk (tree *tp, int *walk_subtrees, void *data) return NULL_TREE; } +/* Implement target hook small_register_classes_for_mode_p. */ + +static bool +bpf_small_register_classes_for_mode_p (machine_mode mode) +{ + if (TARGET_XBPF) + return 1; + else + /* Avoid putting function addresses in registers, as calling these + is not supported in eBPF. */ + return (mode != FUNCTION_MODE); +} + +#undef TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P +#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \ + bpf_small_register_classes_for_mode_p /* Implement TARGET_RESOLVE_OVERLOADED_BUILTIN (see gccint manual section Target Macros::Misc.). diff --git a/gcc/testsuite/gcc.target/bpf/constant-calls.c b/gcc/testsuite/gcc.target/bpf/constant-calls-1.c similarity index 88% rename from gcc/testsuite/gcc.target/bpf/constant-calls.c rename to gcc/testsuite/gcc.target/bpf/constant-calls-1.c index 84612a92ae9..6effc7dfdd4 100644 --- a/gcc/testsuite/gcc.target/bpf/constant-calls.c +++ b/gcc/testsuite/gcc.target/bpf/constant-calls-1.c @@ -1,5 +1,4 @@ /* { dg-do compile } */ -/* { dg-xfail-if "" { bpf-*-* } } */ typedef void *(*T)(void); f1 () diff --git a/gcc/testsuite/gcc.target/bpf/constant-calls-2.c b/gcc/testsuite/gcc.target/bpf/constant-calls-2.c new file mode 100644 index 00000000000..836ab67a1fd --- /dev/null +++ b/gcc/testsuite/gcc.target/bpf/constant-calls-2.c @@ -0,0 +1,16 @@ +/* { dg-do compile } */ +/* { dg-options "-std=c89 -O2" } */ + +static void * (*bpf_map_lookup_elem)(void *map, const void *key) = (void *) 666; + +int foo () +{ + char *ret; + + ret = bpf_map_lookup_elem (ret, ret); + if (ret) + return 0; + return 1; +} + +/* { dg-final { scan-assembler "call\t666" } } */ -- 2.30.2