This patch has been an excessively long time in coming. Please accept my apologies for that.
All but two of the PR37336 dependencies are fixed, The two exceptions are PRs 59694 and 65347. The former involves lack of finalization of an unreferenced entity declared in a block, which I am sure is trivial but I cannot see where the missing trigger is, and the latter involves finalization of function results within an array constructor, for which I will submit an additional patch shortly. PR104272 also remains, in which finalization is occurring during allocation. I fixed this in one place but it seems to have crept out in another :-) Beyond this patch and ones for the three lagging PRs above, a thorough tidy up and unification of finalization is needed. However, I will concentrate on functionality in the first instance. I have tried to interpret F2018 7.5.6.2 and 7.5.6.3 as well as possible. This is not always straightforward and has involved a lot of head scratching! I have used the Intel compiler as a litmus test for the outcomes. This was largely motivated by the observation that, in the user survey conducted by Steve Lionel, gfortran and ifort are often used together . Therefore, quite aside from wishing to comply with the standard as far as possible, it is more than reasonable that the two compilers comply. On application of this patch, only exception to this is the treatment of finalization of arrays of extended types, where the Intel takes "If the entity is of extended type and the parent type is finalizable, the parent component is finalized" such that the parent component is finalized one element at a time, whereas gfortran finalises the parent components as an array. I strongly suspect that, from reading 7.5.6.2 paragraphs 2 and 3 closely, that ifort has it right. However, this is another issue to come back to in the future. The work centred on three areas: (i) Finalization on assignment: This was required because finalization of the lhs was occurring at the wrong time relative to evaluation of the rhs expression and was taking the finalization of entities with finalizable components in the wrong order. The changes in trans-array.cc (structure_alloc_comps) allow gfc_deallocate_alloc_comp_no_caf to occur without finalization so that it can be preceded by calls to the finalization wrapper. The other key change in this area is the addition of trans-expr.cc (gfc_assignment_finalizer_call), which manages the ordering of finalization and deallocation. (ii) Finalization of derived type function results. Previously, finalization was not occuring at all for derived type results but it did for class results. The former is now implemented in trans-expr.cc (finalize_function_result), into which the treatment of class finalization has been included. In order to handled complex expressions correctly, an extra block has been included in gfc_se and is initialized in gfc_init_se. This block accumulates the finalizations so that they can be added at the right time. It is the way in which I will fix PR65347 (I have already tested the principle). (iii) Minor fixes These include the changes in class.cc and the exclusion of artificial entities from finalization. There are some missing testcases (sorry Andrew and Sandro!), which might not be necessary because the broken/missing features are already fixed. The fact that the work correctly now is a strong indication that this is the case. Regtests OK on FC33/x86_64 - OK for mainline (and 11-branch)? Best regards Paul Fortran:Implement missing finalization features [PR37336] 2022-02-02 Paul Thomas <pa...@gcc.gnu.org> gcc/fortran PR fortran/103854 * class.cc (has_finalizer_component): Do not return true for procedure pointer components. PR fortran/96122 * class.cc (finalize_component): Include the missing arguments in the call to the component's finalizer wrapper. PR fortran/37336 * class.cc (finalizer_insert_packed_call): Remove the redundant argument in the call to the final subroutine. * resolve.cc (resolve_where, gfc_resolve_where_code_in_forall, gfc_resolve_forall_body, gfc_resolve_code): Check that the op code is still EXEC_ASSIGN. If it is set lhs to must finalize. * trans-array.cc (structure_alloc_comps): Add boolean argument to suppress finalization and use it for calls from gfc_deallocate_alloc_comp_no_caf. Otherwise it defaults to false. Add a second, additional boolean argument to nullify pointer components and use it in gfc_copy_alloc_comp_del_ptrs. (gfc_alloc_allocatable_for_assignment): Suppress finalization by setting new arg in call to gfc_deallocate_alloc_comp_no_caf. (gfc_copy_alloc_comp_del_ptrs): New function. * trans-array.h : Add the new boolean argument to the prototype of gfc_deallocate_alloc_comp_no_caf with a default of false. Add prototype for gfc_copy_alloc_comp_del_ptrs. * trans-expr.cc (gfc_init_se): Initialize finalblock. (finalize_function_result): New function that finalizes function results in the correct order. (gfc_conv_procedure_call): Use new function for finalizable function results. Replace in-line block for class results with call to new function. (gfc_trans_scalar_assign): Suppress finalization by setting new argument in call to gfc_deallocate_alloc_comp_no_caf. Add the finalization blocks to the main block. (gfc_assignment_finalizer_call): New function to provide finalization on intrinsic assignment. (trans_class_assignment, gfc_trans_assignment_1): Call it and add the block between the rhs evaluation and any reallocation on assignment that there might be. * trans-io.cc (gfc_trans_transfer): Add the final block. * trans-stmt.cc (gfc_trans_call, gfc_trans_allocate): likewise. * trans.cc (gfc_add_finalizer_call): Exclude artificial entities. * trans.h: Add finalblock to gfc_se. gcc/testsuite/ PR fortran/64290 * gfortran.dg/finalize_38.f90 : New test. * gfortran.dg/allocate_with_source_25.f90 : The number of final calls goes down from 6 to 4. PR fortran/67444 * gfortran.dg/finalize_39.f90 : New test. PR fortran/67471 * gfortran.dg/finalize_40.f90 : New test. PR fortran/69298 PR fortran/70863 * gfortran.dg/finalize_41.f90 : New test. PR fortran/71798 * gfortran.dg/finalize_42.f90 : New test. PR fortran/80524 * gfortran.dg/finalize_43.f90 : New test. PR fortran/82996 * gfortran.dg/finalize_44.f90 : New test. PR fortran/84472 * gfortran.dg/finalize_45.f90 : New test. PR fortran/88735 PR fortran/93691 * gfortran.dg/finalize_46.f90 : New test. PR fortran/91316 * gfortran.dg/finalize_47.f90 : New test.
diff --git a/gcc/fortran/class.cc b/gcc/fortran/class.cc index 731e9b0fe6a..a249eea4a30 100644 --- a/gcc/fortran/class.cc +++ b/gcc/fortran/class.cc @@ -896,7 +896,8 @@ has_finalizer_component (gfc_symbol *derived) gfc_component *c; for (c = derived->components; c; c = c->next) - if (c->ts.type == BT_DERIVED && !c->attr.pointer && !c->attr.allocatable) + if (c->ts.type == BT_DERIVED && !c->attr.pointer && !c->attr.allocatable + && c->attr.flavor != FL_PROCEDURE) { if (c->ts.u.derived->f2k_derived && c->ts.u.derived->f2k_derived->finalizers) @@ -1059,7 +1060,8 @@ finalize_component (gfc_expr *expr, gfc_symbol *derived, gfc_component *comp, { /* Call FINAL_WRAPPER (comp); */ gfc_code *final_wrap; - gfc_symbol *vtab; + gfc_symbol *vtab, *byte_stride; + gfc_expr *scalar, *size_expr, *fini_coarray_expr; gfc_component *c; vtab = gfc_find_derived_vtab (comp->ts.u.derived); @@ -1068,12 +1070,54 @@ finalize_component (gfc_expr *expr, gfc_symbol *derived, gfc_component *comp, break; gcc_assert (c); + + /* Set scalar argument for storage_size. */ + gfc_get_symbol ("comp_byte_stride", sub_ns, &byte_stride); + byte_stride->ts = e->ts; + byte_stride->attr.flavor = FL_VARIABLE; + byte_stride->attr.value = 1; + byte_stride->attr.artificial = 1; + gfc_set_sym_referenced (byte_stride); + gfc_commit_symbol (byte_stride); + scalar = gfc_lval_expr_from_sym (byte_stride); + final_wrap = gfc_get_code (EXEC_CALL); final_wrap->symtree = c->initializer->symtree; final_wrap->resolved_sym = c->initializer->symtree->n.sym; final_wrap->ext.actual = gfc_get_actual_arglist (); final_wrap->ext.actual->expr = e; + /* size_expr = STORAGE_SIZE (...) / NUMERIC_STORAGE_SIZE. */ + size_expr = gfc_get_expr (); + size_expr->where = gfc_current_locus; + size_expr->expr_type = EXPR_OP; + size_expr->value.op.op = INTRINSIC_DIVIDE; + + /* STORAGE_SIZE (array,kind=c_intptr_t). */ + size_expr->value.op.op1 + = gfc_build_intrinsic_call (sub_ns, GFC_ISYM_STORAGE_SIZE, + "storage_size", gfc_current_locus, 2, + scalar, + gfc_get_int_expr (gfc_index_integer_kind, + NULL, 0)); + + /* NUMERIC_STORAGE_SIZE. */ + size_expr->value.op.op2 = gfc_get_int_expr (gfc_index_integer_kind, NULL, + gfc_character_storage_size); + size_expr->value.op.op1->ts = size_expr->value.op.op2->ts; + size_expr->ts = size_expr->value.op.op1->ts; + + /* Which provides the argument 'byte_stride'..... */ + final_wrap->ext.actual->next = gfc_get_actual_arglist (); + final_wrap->ext.actual->next->expr = size_expr; + + /* ...and last of all the 'fini_coarray' argument. */ + fini_coarray_expr = gfc_lval_expr_from_sym (fini_coarray); + final_wrap->ext.actual->next->next = gfc_get_actual_arglist (); + final_wrap->ext.actual->next->next->expr = fini_coarray_expr; + + + if (*code) { (*code)->next = final_wrap; @@ -1430,8 +1474,6 @@ finalizer_insert_packed_call (gfc_code *block, gfc_finalizer *fini, block->next->resolved_sym = fini->proc_tree->n.sym; block->next->ext.actual = gfc_get_actual_arglist (); block->next->ext.actual->expr = gfc_lval_expr_from_sym (array); - block->next->ext.actual->next = gfc_get_actual_arglist (); - block->next->ext.actual->next->expr = gfc_copy_expr (size_expr); /* ELSE. */ diff --git a/gcc/fortran/resolve.cc b/gcc/fortran/resolve.cc index 835a4783718..fe17df2f73d 100644 --- a/gcc/fortran/resolve.cc +++ b/gcc/fortran/resolve.cc @@ -10512,6 +10512,10 @@ resolve_where (gfc_code *code, gfc_expr *mask) if (e && !resolve_where_shape (cnext->expr1, e)) gfc_error ("WHERE assignment target at %L has " "inconsistent shape", &cnext->expr1->where); + + if (cnext->op == EXEC_ASSIGN) + cnext->expr1->must_finalize = 1; + break; @@ -10599,6 +10603,10 @@ gfc_resolve_where_code_in_forall (gfc_code *code, int nvar, /* WHERE assignment statement */ case EXEC_ASSIGN: gfc_resolve_assign_in_forall (cnext, nvar, var_expr); + + if (cnext->op == EXEC_ASSIGN) + cnext->expr1->must_finalize = 1; + break; /* WHERE operator assignment statement */ @@ -10645,6 +10653,10 @@ gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr) case EXEC_ASSIGN: case EXEC_POINTER_ASSIGN: gfc_resolve_assign_in_forall (c, nvar, var_expr); + + if (c->op == EXEC_ASSIGN) + c->expr1->must_finalize = 1; + break; case EXEC_ASSIGN_CALL: @@ -11324,6 +11336,7 @@ get_temp_from_expr (gfc_expr *e, gfc_namespace *ns) tmp->n.sym->attr.use_assoc = 0; tmp->n.sym->attr.intent = INTENT_UNKNOWN; + if (as) { tmp->n.sym->as = gfc_copy_array_spec (as); @@ -12069,6 +12082,9 @@ start: && code->expr1->ts.u.derived->attr.defined_assign_comp) generate_component_assignments (&code, ns); + if (code->op == EXEC_ASSIGN) + code->expr1->must_finalize = 1; + break; case EXEC_LABEL_ASSIGN: diff --git a/gcc/fortran/trans-array.cc b/gcc/fortran/trans-array.cc index cfb6eac11c7..689628e1cb6 100644 --- a/gcc/fortran/trans-array.cc +++ b/gcc/fortran/trans-array.cc @@ -994,9 +994,9 @@ gfc_get_array_span (tree desc, gfc_expr *expr) if (tmp && TREE_CODE (tmp) == ARRAY_TYPE && TYPE_STRING_FLAG (tmp)) { gcc_assert (expr->ts.type == BT_CHARACTER); - + tmp = gfc_get_character_len_in_bytes (tmp); - + if (tmp == NULL_TREE || integer_zerop (tmp)) { tree bs; @@ -1007,7 +1007,7 @@ gfc_get_array_span (tree desc, gfc_expr *expr) tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, tmp, bs); } - + tmp = (tmp && !integer_zerop (tmp)) ? (fold_convert (gfc_array_index_type, tmp)) : (NULL_TREE); } @@ -7478,7 +7478,7 @@ gfc_conv_expr_descriptor (gfc_se *se, gfc_expr *expr) if (!se->direct_byref) se->unlimited_polymorphic = UNLIMITED_POLY (expr); - + /* Special case things we know we can pass easily. */ switch (expr->expr_type) { @@ -8910,7 +8910,8 @@ gfc_caf_is_dealloc_only (int caf_mode) /* Recursively traverse an object of derived type, generating code to deallocate, nullify or copy allocatable components. This is the work horse - function for the functions named in this enum. */ + function for the functions named in this enum. When del_ptrs is set with + COPY_ALLOC_COMP, pointers are nullified. */ enum {DEALLOCATE_ALLOC_COMP = 1, NULLIFY_ALLOC_COMP, COPY_ALLOC_COMP, COPY_ONLY_ALLOC_COMP, REASSIGN_CAF_COMP, @@ -8920,9 +8921,11 @@ enum {DEALLOCATE_ALLOC_COMP = 1, NULLIFY_ALLOC_COMP, static gfc_actual_arglist *pdt_param_list; static tree -structure_alloc_comps (gfc_symbol * der_type, tree decl, - tree dest, int rank, int purpose, int caf_mode, - gfc_co_subroutines_args *args) +structure_alloc_comps (gfc_symbol * der_type, tree decl, tree dest, + int rank, int purpose, int caf_mode, + gfc_co_subroutines_args *args, + bool no_finalization = false, + bool del_ptrs = false) { gfc_component *c; gfc_loopinfo loop; @@ -9010,11 +9013,12 @@ structure_alloc_comps (gfc_symbol * der_type, tree decl, gfc_conv_array_data (dest)); dref = gfc_build_array_ref (tmp, index, NULL); tmp = structure_alloc_comps (der_type, vref, dref, rank, - COPY_ALLOC_COMP, caf_mode, args); + COPY_ALLOC_COMP, caf_mode, args, + no_finalization); } else tmp = structure_alloc_comps (der_type, vref, NULL_TREE, rank, purpose, - caf_mode, args); + caf_mode, args, no_finalization); gfc_add_expr_to_block (&loopbody, tmp); @@ -9048,13 +9052,15 @@ structure_alloc_comps (gfc_symbol * der_type, tree decl, if (purpose == DEALLOCATE_ALLOC_COMP && der_type->attr.pdt_type) { tmp = structure_alloc_comps (der_type, decl, NULL_TREE, rank, - DEALLOCATE_PDT_COMP, 0, args); + DEALLOCATE_PDT_COMP, 0, args, + no_finalization); gfc_add_expr_to_block (&fnblock, tmp); } else if (purpose == ALLOCATE_PDT_COMP && der_type->attr.alloc_comp) { tmp = structure_alloc_comps (der_type, decl, NULL_TREE, rank, - NULLIFY_ALLOC_COMP, 0, args); + NULLIFY_ALLOC_COMP, 0, args, + no_finalization); gfc_add_expr_to_block (&fnblock, tmp); } @@ -9116,7 +9122,7 @@ structure_alloc_comps (gfc_symbol * der_type, tree decl, add_when_allocated = structure_alloc_comps (CLASS_DATA (c)->ts.u.derived, comp, NULL_TREE, rank, purpose, - caf_mode, args); + caf_mode, args, no_finalization); } else { @@ -9124,7 +9130,8 @@ structure_alloc_comps (gfc_symbol * der_type, tree decl, add_when_allocated = structure_alloc_comps (c->ts.u.derived, comp, NULL_TREE, rank, purpose, - caf_mode, args); + caf_mode, args, + no_finalization); } } @@ -9240,8 +9247,8 @@ structure_alloc_comps (gfc_symbol * der_type, tree decl, continue; } - if ((c->ts.type == BT_DERIVED && !c->attr.pointer) - || (c->ts.type == BT_CLASS && !CLASS_DATA (c)->attr.class_pointer)) + if (!no_finalization && ((c->ts.type == BT_DERIVED && !c->attr.pointer) + || (c->ts.type == BT_CLASS && !CLASS_DATA (c)->attr.class_pointer))) /* Call the finalizer, which will free the memory and nullify the pointer of an array. */ deallocate_called = gfc_add_comp_finalizer_call (&tmpblock, comp, c, @@ -9269,7 +9276,7 @@ structure_alloc_comps (gfc_symbol * der_type, tree decl, add_when_allocated = structure_alloc_comps (CLASS_DATA (c)->ts.u.derived, comp, NULL_TREE, rank, purpose, - caf_mode, args); + caf_mode, args, no_finalization); } else { @@ -9277,7 +9284,8 @@ structure_alloc_comps (gfc_symbol * der_type, tree decl, add_when_allocated = structure_alloc_comps (c->ts.u.derived, comp, NULL_TREE, rank, purpose, - caf_mode, args); + caf_mode, args, + no_finalization); } } @@ -9575,7 +9583,8 @@ structure_alloc_comps (gfc_symbol * der_type, tree decl, decl, cdecl, NULL_TREE); rank = c->as ? c->as->rank : 0; tmp = structure_alloc_comps (c->ts.u.derived, comp, NULL_TREE, - rank, purpose, caf_mode, args); + rank, purpose, caf_mode, args, + no_finalization); gfc_add_expr_to_block (&fnblock, tmp); } break; @@ -9611,14 +9620,14 @@ structure_alloc_comps (gfc_symbol * der_type, tree decl, tmp = structure_alloc_comps (c->ts.u.derived, comp, dcmp, rank, purpose, caf_mode | GFC_STRUCTURE_CAF_MODE_IN_COARRAY, - args); + args, no_finalization); gfc_add_expr_to_block (&fnblock, tmp); } } break; case COPY_ALLOC_COMP: - if (c->attr.pointer || c->attr.proc_pointer) + if ((c->attr.pointer && !del_ptrs) || c->attr.proc_pointer) continue; /* We need source and destination components. */ @@ -9660,6 +9669,13 @@ structure_alloc_comps (gfc_symbol * der_type, tree decl, dst_data = gfc_conv_descriptor_data_get (dst_data); } + if (CLASS_DATA (c)->attr.pointer) + { + gfc_add_modify (&fnblock, dst_data, + build_int_cst (TREE_TYPE (dst_data), 0)); + continue; + } + gfc_init_block (&tmpblock); gfc_add_modify (&tmpblock, gfc_class_vptr_get (dcmp), @@ -9706,6 +9722,17 @@ structure_alloc_comps (gfc_symbol * der_type, tree decl, tmp, null_data)); continue; } + else if (c->attr.pointer) + { + if (c->attr.dimension) + tmp = gfc_conv_descriptor_data_get (dcmp); + else + tmp = dcmp; + gfc_add_modify (&fnblock, tmp, + build_int_cst (TREE_TYPE (tmp), 0)); + continue; + } + /* To implement guarded deep copy, i.e., deep copy only allocatable components that are really allocated, the deep copy code has to @@ -9719,7 +9746,8 @@ structure_alloc_comps (gfc_symbol * der_type, tree decl, add_when_allocated = structure_alloc_comps (c->ts.u.derived, comp, dcmp, rank, purpose, - caf_mode, args); + caf_mode, args, + no_finalization); } else add_when_allocated = NULL_TREE; @@ -10092,7 +10120,8 @@ gfc_nullify_alloc_comp (gfc_symbol * der_type, tree decl, int rank, { return structure_alloc_comps (der_type, decl, NULL_TREE, rank, NULLIFY_ALLOC_COMP, - GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY | caf_mode, NULL); + GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY | caf_mode, + NULL); } @@ -10105,7 +10134,8 @@ gfc_deallocate_alloc_comp (gfc_symbol * der_type, tree decl, int rank, { return structure_alloc_comps (der_type, decl, NULL_TREE, rank, DEALLOCATE_ALLOC_COMP, - GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY | caf_mode, NULL); + GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY | caf_mode, + NULL); } tree @@ -10143,7 +10173,8 @@ gfc_bcast_alloc_comp (gfc_symbol *derived, gfc_expr *expr, int rank, tmp = structure_alloc_comps (derived, array, NULL_TREE, rank, BCAST_ALLOC_COMP, - GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY, &args); + GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY, + &args); return tmp; } @@ -10153,10 +10184,12 @@ gfc_bcast_alloc_comp (gfc_symbol *derived, gfc_expr *expr, int rank, status of coarrays. */ tree -gfc_deallocate_alloc_comp_no_caf (gfc_symbol * der_type, tree decl, int rank) +gfc_deallocate_alloc_comp_no_caf (gfc_symbol * der_type, tree decl, int rank, + bool no_finalization) { return structure_alloc_comps (der_type, decl, NULL_TREE, rank, - DEALLOCATE_ALLOC_COMP, 0, NULL); + DEALLOCATE_ALLOC_COMP, 0, NULL, + no_finalization); } @@ -10164,7 +10197,8 @@ tree gfc_reassign_alloc_comp_caf (gfc_symbol *der_type, tree decl, tree dest) { return structure_alloc_comps (der_type, decl, dest, 0, REASSIGN_CAF_COMP, - GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY, NULL); + GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY, + NULL); } @@ -10180,6 +10214,20 @@ gfc_copy_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank, } +/* Recursively traverse an object of derived type, generating code to + copy it and its allocatable components, while deleting pointers and + suppressing any finalization that might occur. This is used in the + finaliztion of function results. */ + +tree +gfc_copy_alloc_comp_del_ptrs (gfc_symbol * der_type, tree decl, tree dest, + int rank, int caf_mode) +{ + return structure_alloc_comps (der_type, decl, dest, rank, COPY_ALLOC_COMP, + caf_mode, NULL, true, true); +} + + /* Recursively traverse an object of derived type, generating code to copy only its allocatable components. */ @@ -10950,7 +10998,7 @@ gfc_alloc_allocatable_for_assignment (gfc_loopinfo *loop, && expr1->ts.u.derived->attr.alloc_comp) { tmp = gfc_deallocate_alloc_comp_no_caf (expr1->ts.u.derived, old_desc, - expr1->rank); + expr1->rank, true); gfc_add_expr_to_block (&realloc_block, tmp); } diff --git a/gcc/fortran/trans-array.h b/gcc/fortran/trans-array.h index 04fee617590..2743158cb11 100644 --- a/gcc/fortran/trans-array.h +++ b/gcc/fortran/trans-array.h @@ -56,11 +56,14 @@ tree gfc_nullify_alloc_comp (gfc_symbol *, tree, int, int cm = 0); tree gfc_deallocate_alloc_comp (gfc_symbol *, tree, int, int cm = 0); tree gfc_bcast_alloc_comp (gfc_symbol *, gfc_expr *, int, tree, tree, tree, tree); -tree gfc_deallocate_alloc_comp_no_caf (gfc_symbol *, tree, int); +tree gfc_deallocate_alloc_comp_no_caf (gfc_symbol *, tree, int, + bool no_finalization = false); tree gfc_reassign_alloc_comp_caf (gfc_symbol *, tree, tree); tree gfc_copy_alloc_comp (gfc_symbol *, tree, tree, int, int); +tree gfc_copy_alloc_comp_del_ptrs (gfc_symbol *, tree, tree, int, int); + tree gfc_copy_only_alloc_comp (gfc_symbol *, tree, tree, int); tree gfc_allocate_pdt_comp (gfc_symbol *, tree, int, gfc_actual_arglist *); diff --git a/gcc/fortran/trans-expr.cc b/gcc/fortran/trans-expr.cc index eb6a78c3a62..34ad867e041 100644 --- a/gcc/fortran/trans-expr.cc +++ b/gcc/fortran/trans-expr.cc @@ -1904,6 +1904,7 @@ gfc_init_se (gfc_se * se, gfc_se * parent) { memset (se, 0, sizeof (gfc_se)); gfc_init_block (&se->pre); + gfc_init_block (&se->finalblock); gfc_init_block (&se->post); se->parent = parent; @@ -5975,6 +5976,117 @@ post_call: } +/* Finalize a function result using the finalizer wrapper. The result is fixed + in order to prevent repeated calls. */ + +static void +finalize_function_result (gfc_se *se, gfc_symbol *derived, + symbol_attribute attr, int rank) +{ + tree vptr, final_fndecl, desc, tmp, size, is_final, data_ptr; + gfc_symbol *vtab; + gfc_se post_se; + bool is_class = GFC_CLASS_TYPE_P (TREE_TYPE (se->expr)); + + if (attr.pointer) + return; + + if (is_class) + { + if (!VAR_P (se->expr)) + { + desc = gfc_evaluate_now (se->expr, &se->pre); + se->expr = desc; + } + desc = gfc_class_data_get (se->expr); + vptr = gfc_class_vptr_get (se->expr); + } + else + { + desc = gfc_evaluate_now (se->expr, &se->pre); + se->expr = gfc_evaluate_now (desc, &se->pre); + /* Need to copy allocated components and delete pointer components. */ + gfc_add_expr_to_block (&se->pre, + gfc_copy_alloc_comp_del_ptrs (derived, desc, + se->expr, rank, 0)); + vtab = gfc_find_derived_vtab (derived); + if (vtab->backend_decl == NULL_TREE) + vptr = gfc_get_symbol_decl (vtab); + else + vptr = vtab->backend_decl; + vptr = gfc_build_addr_expr (NULL, vptr); + } + + size = gfc_vptr_size_get (vptr); + final_fndecl = gfc_vptr_final_get (vptr); + is_final = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, + final_fndecl, + fold_convert (TREE_TYPE (final_fndecl), + null_pointer_node)); + + final_fndecl = build_fold_indirect_ref_loc (input_location, + final_fndecl); + if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))) + { + if (is_class) + desc = gfc_conv_scalar_to_descriptor (se, desc, attr); + else + { + gfc_init_se (&post_se, NULL); + desc = gfc_conv_scalar_to_descriptor (&post_se, desc, attr); + gfc_add_expr_to_block (&se->pre, gfc_finish_block (&post_se.pre)); + } + } + + tmp = gfc_create_var (TREE_TYPE (desc), "res"); + gfc_add_modify (&se->pre, tmp, desc); + desc = tmp; + + tmp = build_call_expr_loc (input_location, final_fndecl, 3, + gfc_build_addr_expr (NULL, desc), + size, boolean_false_node); + + tmp = fold_build3_loc (input_location, COND_EXPR, + void_type_node, is_final, tmp, + build_empty_stmt (input_location)); + + if (is_class && se->ss && se->ss->loop) + { + data_ptr = gfc_conv_descriptor_data_get (desc); + + gfc_add_expr_to_block (&se->loop->post, tmp); + tmp = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, + data_ptr, + fold_convert (TREE_TYPE (data_ptr), + null_pointer_node)); + tmp = fold_build3_loc (input_location, COND_EXPR, + void_type_node, tmp, + gfc_call_free (data_ptr), + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&se->loop->post, tmp); + } + else + { + gfc_add_expr_to_block (&se->finalblock, tmp); + if (is_class) + { + data_ptr = gfc_conv_descriptor_data_get (desc); + tmp = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, + data_ptr, + fold_convert (TREE_TYPE (data_ptr), + null_pointer_node)); + tmp = fold_build3_loc (input_location, COND_EXPR, + void_type_node, tmp, + gfc_call_free (data_ptr), + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&se->finalblock, tmp); + } + } +} + /* Generate code for a procedure call. Note can return se->post != NULL. If se->direct_byref is set then se->expr contains the return parameter. Return nonzero, if the call has alternate specifiers. @@ -7011,6 +7123,7 @@ gfc_conv_procedure_call (gfc_se * se, gfc_symbol * sym, gfc_add_block_to_block (&se->pre, &parmse.pre); gfc_add_block_to_block (&post, &parmse.post); + gfc_add_block_to_block (&se->finalblock, &parmse.finalblock); /* Allocated allocatable components of derived types must be deallocated for non-variable scalars, array arguments to elemental @@ -7675,9 +7788,17 @@ gfc_conv_procedure_call (gfc_se * se, gfc_symbol * sym, /* Allocatable scalar function results must be freed and nullified after use. This necessitates the creation of a temporary to hold the result to prevent duplicate calls. */ + symbol_attribute attr = comp ? comp->attr : sym->attr; + bool allocatable = attr.allocatable && !attr.dimension; + gfc_symbol *der = comp && comp->ts.type == BT_DERIVED ? comp->ts.u.derived + : (sym->ts.type == BT_DERIVED ? sym->ts.u.derived : NULL); + bool finalizable = der != NULL && gfc_is_finalizable (der, NULL); + + if (!byref && finalizable) + finalize_function_result (se, der, attr, expr->rank); + if (!byref && sym->ts.type != BT_CHARACTER - && ((sym->attr.allocatable && !sym->attr.dimension && !comp) - || (comp && comp->attr.allocatable && !comp->attr.dimension))) + && allocatable && !finalizable) { tmp = gfc_create_var (TREE_TYPE (se->expr), NULL); gfc_add_modify (&se->pre, tmp, se->expr); @@ -7737,6 +7858,9 @@ gfc_conv_procedure_call (gfc_se * se, gfc_symbol * sym, se->expr = info->descriptor; /* Bundle in the string length. */ se->string_length = len; + + if (finalizable) + finalize_function_result (se, der, attr, expr->rank); } else if (ts.type == BT_CHARACTER) { @@ -7829,8 +7953,6 @@ gfc_conv_procedure_call (gfc_se * se, gfc_symbol * sym, && se->expr && GFC_CLASS_TYPE_P (TREE_TYPE (se->expr)) && expr->must_finalize) { - tree final_fndecl; - tree is_final; int n; if (se->ss && se->ss->loop) { @@ -7852,66 +7974,15 @@ gfc_conv_procedure_call (gfc_se * se, gfc_symbol * sym, /* TODO Eliminate the doubling of temporaries. This one is necessary to ensure no memory leakage. */ se->expr = gfc_evaluate_now (se->expr, &se->pre); - tmp = gfc_class_data_get (se->expr); - tmp = gfc_conv_scalar_to_descriptor (se, tmp, - CLASS_DATA (expr->value.function.esym->result)->attr); } - if ((gfc_is_class_array_function (expr) - || gfc_is_alloc_class_scalar_function (expr)) - && CLASS_DATA (expr->value.function.esym->result)->attr.pointer) - goto no_finalization; - - final_fndecl = gfc_class_vtab_final_get (se->expr); - is_final = fold_build2_loc (input_location, NE_EXPR, - logical_type_node, - final_fndecl, - fold_convert (TREE_TYPE (final_fndecl), - null_pointer_node)); - final_fndecl = build_fold_indirect_ref_loc (input_location, - final_fndecl); - tmp = build_call_expr_loc (input_location, - final_fndecl, 3, - gfc_build_addr_expr (NULL, tmp), - gfc_class_vtab_size_get (se->expr), - boolean_false_node); - tmp = fold_build3_loc (input_location, COND_EXPR, - void_type_node, is_final, tmp, - build_empty_stmt (input_location)); - - if (se->ss && se->ss->loop) - { - gfc_prepend_expr_to_block (&se->ss->loop->post, tmp); - tmp = fold_build2_loc (input_location, NE_EXPR, - logical_type_node, - info->data, - fold_convert (TREE_TYPE (info->data), - null_pointer_node)); - tmp = fold_build3_loc (input_location, COND_EXPR, - void_type_node, tmp, - gfc_call_free (info->data), - build_empty_stmt (input_location)); - gfc_add_expr_to_block (&se->ss->loop->post, tmp); - } - else - { - tree classdata; - gfc_prepend_expr_to_block (&se->post, tmp); - classdata = gfc_class_data_get (se->expr); - tmp = fold_build2_loc (input_location, NE_EXPR, - logical_type_node, - classdata, - fold_convert (TREE_TYPE (classdata), - null_pointer_node)); - tmp = fold_build3_loc (input_location, COND_EXPR, - void_type_node, tmp, - gfc_call_free (classdata), - build_empty_stmt (input_location)); - gfc_add_expr_to_block (&se->post, tmp); - } + /* Finalize the result, if necessary. */ + attr = CLASS_DATA (expr->value.function.esym->result)->attr; + if (!((gfc_is_class_array_function (expr) + || gfc_is_alloc_class_scalar_function (expr)) + && attr.pointer)) + finalize_function_result (se, NULL, attr, expr->rank); } - -no_finalization: gfc_add_block_to_block (&se->post, &post); } @@ -10430,7 +10501,8 @@ gfc_trans_scalar_assign (gfc_se * lse, gfc_se * rse, gfc_typespec ts, if (dealloc) { tmp_var = gfc_evaluate_now (lse->expr, &lse->pre); - tmp = gfc_deallocate_alloc_comp_no_caf (ts.u.derived, tmp_var, 0); + tmp = gfc_deallocate_alloc_comp_no_caf (ts.u.derived, tmp_var, + 0, true); if (deep_copy) tmp = build3_v (COND_EXPR, cond, build_empty_stmt (input_location), tmp); @@ -10438,6 +10510,7 @@ gfc_trans_scalar_assign (gfc_se * lse, gfc_se * rse, gfc_typespec ts, } gfc_add_block_to_block (&block, &rse->pre); + gfc_add_block_to_block (&block, &lse->finalblock); gfc_add_block_to_block (&block, &lse->pre); gfc_add_modify (&block, lse->expr, @@ -10469,6 +10542,7 @@ gfc_trans_scalar_assign (gfc_se * lse, gfc_se * rse, gfc_typespec ts, { gfc_add_block_to_block (&block, &lse->pre); gfc_add_block_to_block (&block, &rse->pre); + gfc_add_block_to_block (&block, &lse->finalblock); tmp = fold_build1_loc (input_location, VIEW_CONVERT_EXPR, TREE_TYPE (lse->expr), rse->expr); gfc_add_modify (&block, lse->expr, tmp); @@ -10478,6 +10552,7 @@ gfc_trans_scalar_assign (gfc_se * lse, gfc_se * rse, gfc_typespec ts, { gfc_add_block_to_block (&block, &lse->pre); gfc_add_block_to_block (&block, &rse->pre); + gfc_add_block_to_block (&block, &lse->finalblock); if (!trans_scalar_class_assign (&block, lse, rse)) { @@ -10872,6 +10947,7 @@ gfc_trans_arrayfunc_assign (gfc_expr * expr1, gfc_expr * expr2) gfc_conv_function_expr (&se, expr2); gfc_add_block_to_block (&se.pre, &se.post); + gfc_add_block_to_block (&se.pre, &se.finalblock); if (ss) gfc_cleanup_loop (&loop); @@ -11387,6 +11463,96 @@ is_runtime_conformable (gfc_expr *expr1, gfc_expr *expr2) } + /* F2018 (7.5.6.3): "When an intrinsic assignment statement is executed + (10.2.1.3), if the variable is not an unallocated allocatable variable, + it is finalized after evaluation of expr and before the definition of + the variable. If the variable is an allocated allocatable variable, or + has an allocated allocatable subobject, that would be deallocated by + intrinsic assignment, the finalization occurs before the deallocation */ + +static tree +gfc_assignment_finalizer_call (gfc_expr *expr1, bool init_flag) +{ + stmtblock_t final_block; + gfc_init_block (&final_block); + symbol_attribute lhs_attr; + tree final_expr; + tree ptr; + tree cond; + gfc_se se; + gfc_symbol *sym = expr1->symtree->n.sym; + gfc_ref *ref = expr1->ref; + + /* We have to exclude vtable procedures (_copy and _final especially), uses + of gfc_trans_assignment_1 in initialization and allocation before trying + to build a final call. */ + if (!expr1->must_finalize + || sym->attr.artificial + || sym->ns->proc_name->attr.artificial + || init_flag) + return NULL_TREE; + + /* F2018 7.5.6.2: Only finalizable entities are finalized. */ + for (; ref; ref = ref->next) + if (ref->type == REF_COMPONENT) + return NULL_TREE; + + if (!(sym->ts.type == BT_CLASS + || (sym->ts.type == BT_DERIVED + && gfc_is_finalizable (sym->ts.u.derived, NULL))) + || !gfc_add_finalizer_call (&final_block, expr1)) + return NULL_TREE; + + lhs_attr = gfc_expr_attr (expr1); + + /* Check allocatable/pointer is allocated/associated. */ + if (lhs_attr.allocatable || lhs_attr.pointer) + { + if (expr1->ts.type == BT_CLASS) + { + ptr = gfc_get_class_from_gfc_expr (expr1); + gcc_assert (ptr != NULL_TREE); + ptr = gfc_class_data_get (ptr); + if (lhs_attr.dimension) + ptr = gfc_conv_descriptor_data_get (ptr); + } + else + { + gfc_init_se (&se, NULL); + if (expr1->rank) + { + gfc_conv_expr_descriptor (&se, expr1); + ptr = gfc_conv_descriptor_data_get (se.expr); + } + else + { + gfc_conv_expr (&se, expr1); + ptr = gfc_build_addr_expr (NULL_TREE, se.expr); + } + } + + cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + ptr, build_zero_cst (TREE_TYPE (ptr))); + final_expr = build3_loc (input_location, COND_EXPR, void_type_node, + cond, gfc_finish_block (&final_block), + build_empty_stmt (input_location)); + } + else + final_expr = gfc_finish_block (&final_block); + + /* Check optional present. */ + if (sym->attr.optional) + { + cond = gfc_conv_expr_present (sym); + final_expr = build3_loc (input_location, COND_EXPR, void_type_node, + cond, final_expr, + build_empty_stmt (input_location)); + } + + return final_expr; +} + + static tree trans_class_assignment (stmtblock_t *block, gfc_expr *lhs, gfc_expr *rhs, gfc_se *lse, gfc_se *rse, bool use_vptr_copy, @@ -11394,6 +11560,16 @@ trans_class_assignment (stmtblock_t *block, gfc_expr *lhs, gfc_expr *rhs, { tree tmp, fcn, stdcopy, to_len, from_len, vptr, old_vptr; vec<tree, va_gc> *args = NULL; + tree final_expr; + + final_expr = gfc_assignment_finalizer_call (lhs, false); + if (final_expr != NULL_TREE) + { + if (rse->loop) + gfc_prepend_expr_to_block (&rse->loop->pre, final_expr); + else + gfc_add_expr_to_block (block, final_expr); + } /* Store the old vptr so that dynamic types can be compared for reallocation to occur or not. */ @@ -11419,8 +11595,12 @@ trans_class_assignment (stmtblock_t *block, gfc_expr *lhs, gfc_expr *rhs, old_vptr = build_int_cst (TREE_TYPE (vptr), 0); size = gfc_vptr_size_get (vptr); - class_han = GFC_CLASS_TYPE_P (TREE_TYPE (lse->expr)) - ? gfc_class_data_get (lse->expr) : lse->expr; + if (TREE_CODE (lse->expr) == INDIRECT_REF) + tmp = TREE_OPERAND (lse->expr, 0); + else + tmp = lse->expr; + class_han = GFC_CLASS_TYPE_P (TREE_TYPE (tmp)) + ? gfc_class_data_get (tmp) : tmp; /* Allocate block. */ gfc_init_block (&alloc); @@ -11519,6 +11699,7 @@ trans_class_assignment (stmtblock_t *block, gfc_expr *lhs, gfc_expr *rhs, } } + /* Subroutine of gfc_trans_assignment that actually scalarizes the assignment. EXPR1 is the destination/LHS and EXPR2 is the source/RHS. init_flag indicates initialization expressions and dealloc that no @@ -11542,6 +11723,7 @@ gfc_trans_assignment_1 (gfc_expr * expr1, gfc_expr * expr2, bool init_flag, tree tmp; stmtblock_t block; stmtblock_t body; + tree final_expr; bool l_is_temp; bool scalar_to_array; tree string_length; @@ -11582,6 +11764,7 @@ gfc_trans_assignment_1 (gfc_expr * expr1, gfc_expr * expr2, bool init_flag, needed at two locations, so do it once only before the information is needed. */ lhs_attr = gfc_expr_attr (expr1); + is_poly_assign = (use_vptr_copy || lhs_attr.pointer || (lhs_attr.allocatable && !lhs_attr.dimension)) && (expr1->ts.type == BT_CLASS @@ -11855,6 +12038,8 @@ gfc_trans_assignment_1 (gfc_expr * expr1, gfc_expr * expr2, bool init_flag, else gfc_add_expr_to_block (&loop.post, tmp2); } + + expr1->must_finalize = 0; } else if (flag_coarray == GFC_FCOARRAY_LIB && lhs_caf_attr.codimension && rhs_caf_attr.codimension @@ -11900,6 +12085,32 @@ gfc_trans_assignment_1 (gfc_expr * expr1, gfc_expr * expr2, bool init_flag, } } + /* Comply with F2018 (7.5.6.3). Make sure that any finalization code is added + after evaluation of the rhs and before reallocation. */ + final_expr = gfc_assignment_finalizer_call (expr1, init_flag); + if (final_expr + && !(expr2->expr_type == EXPR_VARIABLE + && expr2->symtree->n.sym->attr.artificial)) + { + if (lss == gfc_ss_terminator) + { + if (tmp != NULL_TREE && final_expr != NULL_TREE) + { + gfc_add_block_to_block (&block, &rse.pre); + gfc_add_expr_to_block (&block, final_expr); + } + else + gfc_add_expr_to_block (&lse.finalblock, final_expr); + } + else + { + gfc_add_block_to_block (&body, &rse.pre); + gfc_add_expr_to_block (&loop.code[expr1->rank - 1], final_expr); + } + } + else + gfc_add_block_to_block (&body, &rse.pre); + /* If nothing else works, do it the old fashioned way! */ if (tmp == NULL_TREE) tmp = gfc_trans_scalar_assign (&lse, &rse, expr1->ts, @@ -11909,12 +12120,18 @@ gfc_trans_assignment_1 (gfc_expr * expr1, gfc_expr * expr2, bool init_flag, !(l_is_temp || init_flag) && dealloc, expr1->symtree->n.sym->attr.codimension); - /* Add the pre blocks to the body. */ - gfc_add_block_to_block (&body, &rse.pre); + + /* Add the lse pre block to the body */ gfc_add_block_to_block (&body, &lse.pre); gfc_add_expr_to_block (&body, tmp); /* Add the post blocks to the body. */ - gfc_add_block_to_block (&body, &rse.post); + if (lss == gfc_ss_terminator) + { + gfc_add_block_to_block (&rse.finalblock, &rse.post); + gfc_add_block_to_block (&body, &rse.finalblock); + } + else + gfc_add_block_to_block (&body, &rse.post); gfc_add_block_to_block (&body, &lse.post); if (lss == gfc_ss_terminator) @@ -11979,6 +12196,7 @@ gfc_trans_assignment_1 (gfc_expr * expr1, gfc_expr * expr2, bool init_flag, /* Wrap the whole thing up. */ gfc_add_block_to_block (&block, &loop.pre); gfc_add_block_to_block (&block, &loop.post); + gfc_add_block_to_block (&block, &rse.finalblock); gfc_cleanup_loop (&loop); } diff --git a/gcc/fortran/trans-io.cc b/gcc/fortran/trans-io.cc index 732221f848b..bf4f0671585 100644 --- a/gcc/fortran/trans-io.cc +++ b/gcc/fortran/trans-io.cc @@ -2664,6 +2664,7 @@ scalarize: gfc_add_block_to_block (&body, &se.pre); gfc_add_block_to_block (&body, &se.post); + gfc_add_block_to_block (&body, &se.finalblock); if (se.ss == NULL) tmp = gfc_finish_block (&body); diff --git a/gcc/fortran/trans-stmt.cc b/gcc/fortran/trans-stmt.cc index 04f8147d23b..e0f513f8941 100644 --- a/gcc/fortran/trans-stmt.cc +++ b/gcc/fortran/trans-stmt.cc @@ -443,7 +443,8 @@ gfc_trans_call (gfc_code * code, bool dependency_check, else gfc_add_expr_to_block (&se.pre, se.expr); - gfc_add_block_to_block (&se.pre, &se.post); + gfc_add_block_to_block (&se.finalblock, &se.post); + gfc_add_block_to_block (&se.pre, &se.finalblock); } else @@ -542,6 +543,7 @@ gfc_trans_call (gfc_code * code, bool dependency_check, gfc_trans_scalarizing_loops (&loop, &body); gfc_add_block_to_block (&se.pre, &loop.pre); gfc_add_block_to_block (&se.pre, &loop.post); + gfc_add_block_to_block (&se.pre, &loopse.finalblock); gfc_add_block_to_block (&se.pre, &se.post); gfc_cleanup_loop (&loop); } @@ -6337,7 +6339,10 @@ gfc_trans_allocate (gfc_code * code) } gfc_add_block_to_block (&block, &se.pre); if (code->expr3->must_finalize) - gfc_add_block_to_block (&final_block, &se.post); + { + gfc_add_block_to_block (&final_block, &se.finalblock); + gfc_add_block_to_block (&final_block, &se.post); + } else gfc_add_block_to_block (&post, &se.post); diff --git a/gcc/fortran/trans.cc b/gcc/fortran/trans.cc index 333dfa69642..fabdcde7267 100644 --- a/gcc/fortran/trans.cc +++ b/gcc/fortran/trans.cc @@ -1242,6 +1242,9 @@ gfc_add_finalizer_call (stmtblock_t *block, gfc_expr *expr2) if (!expr2 || (expr2->ts.type != BT_DERIVED && expr2->ts.type != BT_CLASS)) return false; + if (gfc_expr_attr (expr2).artificial) + return false; + if (expr2->ts.type == BT_DERIVED) { gfc_is_finalizable (expr2->ts.u.derived, &final_expr); diff --git a/gcc/fortran/trans.h b/gcc/fortran/trans.h index 738c7487a56..72af54c4d29 100644 --- a/gcc/fortran/trans.h +++ b/gcc/fortran/trans.h @@ -43,6 +43,10 @@ typedef struct gfc_se stmtblock_t pre; stmtblock_t post; + /* Carries finalization code that is required to be executed execution of the + innermost executable construct. */ + stmtblock_t finalblock; + /* the result of the expression */ tree expr; @@ -55,7 +59,7 @@ typedef struct gfc_se /* Whether expr is a reference to an unlimited polymorphic object. */ unsigned unlimited_polymorphic:1; - + /* If set gfc_conv_variable will return an expression for the array descriptor. When set, want_pointer should also be set. If not set scalarizing variables will be substituted. */ diff --git a/gcc/testsuite/gfortran.dg/allocate_with_source_25.f90 b/gcc/testsuite/gfortran.dg/allocate_with_source_25.f90 index 92dc50756d4..de20a147842 100644 --- a/gcc/testsuite/gfortran.dg/allocate_with_source_25.f90 +++ b/gcc/testsuite/gfortran.dg/allocate_with_source_25.f90 @@ -68,4 +68,4 @@ contains end function func_foo_a end program simple_leak -! { dg-final { scan-tree-dump-times "\>_final" 6 "original" } } +! { dg-final { scan-tree-dump-times "\>_final" 4 "original" } }
! { dg-do run } ! ! Test the fix for PR71798 in which the result of 'create_mytype' ! was not being finalized after the completion of the assignment ! statement. ! ! Contributed by Jonathan Hogg <jhog...@gmail.com> ! module mymod implicit none integer :: next = 0 type :: mytype integer :: idx = -1 contains procedure :: mytype_assign generic :: assignment(=) => mytype_assign final :: mytype_final end type mytype contains subroutine mytype_assign(this, other) class(mytype), intent(inout) :: this class(mytype), intent(in) :: other this%idx = next next = next + 1 if (next /= 2) stop 2 end subroutine mytype_assign subroutine mytype_final(this) type(mytype) :: this next = next + 1 if (next /= 3) stop 3 end subroutine mytype_final type(mytype) function create_mytype() create_mytype%idx = next next = next + 1 if (next /= 1) stop 1 end function create_mytype end module mymod program test use mymod implicit none type(mytype) :: x x = create_mytype() end program test
! { dg-do run } ! ! Test that PR67471 is fixed. Used not to call the finalizer. ! ! Contributed by Ian Harvey <ian_har...@bigpond.com> ! module test_final_mod implicit none type :: my_final integer :: n = 1 contains final :: destroy_rank1_array end type my_final integer :: final_calls = 0 contains subroutine destroy_rank1_array(self) type(my_final), intent(inout) :: self(:) if (size(self) /= 0) then if (size(self) /= 2) stop 1 if (any (self%n /= [3,4])) stop 2 else stop 3 end if final_calls = final_calls + 1 end subroutine destroy_rank1_array end module test_final_mod program test_finalizer use test_final_mod implicit none type(my_final) :: b(4), c(2) b%n = [2, 3, 4, 5] c%n = [6, 7] b(2:3) = c if (final_calls /= 1) stop 4 end program test_finalizer
! { dg-do run } ! ! Test finalization on intrinsic assignment (F2018 (7.5.6.3)) ! module testmode implicit none type :: simple integer :: ind contains final :: destructor1, destructor2 end type simple type, extends(simple) :: complicated real :: rind contains final :: destructor3, destructor4 end type complicated integer :: check_scalar integer :: check_array(4) real :: check_real real :: check_rarray(4) integer :: final_count = 0 contains subroutine destructor1(self) type(simple), intent(inout) :: self check_scalar = self%ind check_array = 0 final_count = final_count + 1 end subroutine destructor1 subroutine destructor2(self) type(simple), intent(inout) :: self(:) check_scalar = 0 check_array(1:size(self, 1)) = self%ind final_count = final_count + 1 end subroutine destructor2 subroutine destructor3(self) type(complicated), intent(inout) :: self check_real = self%rind check_array = 0.0 final_count = final_count + 1 end subroutine destructor3 subroutine destructor4(self) type(complicated), intent(inout) :: self(:) check_real = 0.0 check_rarray(1:size(self, 1)) = self%rind final_count = final_count + 1 end subroutine destructor4 function constructor1(ind) result(res) type(simple), allocatable :: res integer, intent(in) :: ind allocate (res, source = simple (ind)) end function constructor1 function constructor2(ind, rind) result(res) class(simple), allocatable :: res(:) integer, intent(in) :: ind(:) real, intent(in), optional :: rind(:) type(complicated), allocatable :: src(:) integer :: sz integer :: i if (present (rind)) then sz = min (size (ind, 1), size (rind, 1)) src = [(complicated (ind(i), rind(i)), i = 1, sz)] allocate (res, source = src) else sz = size (ind, 1) allocate (res, source = [(simple (ind(i)), i = 1, sz)]) end if end function constructor2 subroutine test (cnt, scalar, array, off, rind, rarray) integer :: cnt integer :: scalar integer :: array(:) integer :: off real, optional :: rind real, optional :: rarray(:) if (final_count .ne. cnt) stop 1 + off if (check_scalar .ne. scalar) stop 2 + off if (any (check_array(1:size (array, 1)) .ne. array)) stop 3 + off if (present (rind)) then if (check_real .ne. rind) stop 4 + off end if if (present (rarray)) then if (any (check_rarray(1:size (rarray, 1)) .ne. rarray)) stop 5 + off end if end subroutine test end module testmode program test_final use testmode implicit none type(simple), allocatable :: MyType, MyType2 type(simple), allocatable :: MyTypeArray(:) type(simple) :: ThyType = simple(21), ThyType2 = simple(22) class(simple), allocatable :: MyClass class(simple), allocatable :: MyClassArray(:) ! ************************ ! Derived type assignments ! ************************ ! The original PR - one finalization of 'var' before (re)allocation. MyType = ThyType call test(1, 0, [0,0], 0) if (.not. allocated(MyType)) allocate(MyType) allocate(MyType2) MyType%ind = 1 MyType2%ind = 2 ! This should result in a final call with self = simple(1). MyType = MyType2 call test(2, 1, [0,0], 10) allocate(MyTypeArray(2)) MyTypeArray%ind = [42, 43] ! This should result in a final call with self = [simple(42),simple(43)]. MyTypeArray = [ThyType, ThyType2] call test(3, 0, [42,43], 20) ! This should result in a final call with self = initialization = simple(22). ThyType2 = simple(99) call test(4, 22, [0,0], 30) ! This should result in a final call with self = simple(22). ThyType = ThyType2 call test(5, 21, [0,0], 40) ! This should result in two final calls; the last is for self2 = simple(2). deallocate (MyType, MyType2) call test(7, 2, [0,0], 50) ! This should result in one final call; MyTypeArray = [simple(21),simple(22)]. deallocate (MyTypeArray) call test(8, 0, [21,22], 60) ! Check that rhs function expressions do not interfere with finalization. ! The lhs is finalized before assignment. ! The function result is finalized after the assignment. allocate (MyType, source = simple (11)) MyType = constructor1 (99) call test(10, 99, [0,0], 70) deallocate (MyType) ! ***************** ! Class assignments ! ***************** final_count = 0 allocate (MyClass, source = simple (3)) ! This should result in a final call with the allocated value. MyClass = simple (4) call test(1, 3, [0,0], 100) ! This should result in a final call with the assigned value. deallocate (MyClass) call test(2, 4, [0,0], 110) allocate (MyClassArray, source = [simple (5), simple (6)]) ! Make sure that there is no final call. call test(2, 4, [0,0], 120) MyClassArray = [simple (7), simple (8)] ! The final call should return the value before the assignment. call test(2, 4, [0,0], 130) ! This should result in a final call with the assigned value. deallocate (MyClassArray) call test(3, 0, [7,8], 140) ! This should produce no final calls. allocate (MyClassArray, source = [complicated(1, 2.0),complicated(3, 4.0)]) ! This should produce calls to destructor4 then destructor2. deallocate (MyClassArray) ! F2018 7.5.6.3: "If the entity is of extended type and the parent type is ! finalizable, the parent component is finalized. call test(5, 0, [1, 3], 150, rarray = [2.0, 4.0]) ! Since 'constructor2; must finalize 'src' after the finalization of ! 'MyClassArray', the result in 'check_array' should be [10,20]. MyClassArray = constructor2 ([10,20], [10.0,20.0]) call test(9, 0, [10,20], 160, rarray = [10.0,20.0]) deallocate (MyClassArray) call test(11, 0, [10, 20], 170, rarray = [10.0,20.0]) end program test_final
! { dg-do run } ! ! Test that PR69298 is fixed. Used to segfault on finalization in ! subroutine 'in_type'. ! ! Contributed by Neil Carlson <neil.n.carl...@gmail.com> ! module stuff_mod implicit none private public :: stuff_type, final_calls type stuff_type private integer :: junk contains procedure get_junk procedure stuff_copy_initialiser generic :: assignment(=) => stuff_copy_initialiser final :: stuff_scalar_finaliser, & stuff_1d_finaliser end type stuff_type integer :: final_calls = 0 interface stuff_type procedure stuff_initialiser end interface stuff_type contains function stuff_initialiser( junk ) result(new_stuff) implicit none type(stuff_type) :: new_stuff integer :: junk new_stuff%junk = junk end function stuff_initialiser subroutine stuff_copy_initialiser( destination, source ) implicit none class(stuff_type), intent(out) :: destination class(stuff_type), intent(in) :: source destination%junk = source%junk end subroutine stuff_copy_initialiser subroutine stuff_scalar_finaliser( this ) implicit none type(stuff_type), intent(inout) :: this final_calls = final_calls + 1 end subroutine stuff_scalar_finaliser subroutine stuff_1d_finaliser( this ) implicit none type(stuff_type), intent(inout) :: this(:) integer :: i final_calls = final_calls + 100 end subroutine stuff_1d_finaliser function get_junk( this ) result(junk) implicit none class(stuff_type), intent(in) :: this integer :: junk junk = this%junk end function get_junk end module stuff_mod module test_mod use stuff_mod, only : stuff_type, final_calls implicit none private public :: test_type type test_type private type(stuff_type) :: thing type(stuff_type) :: things(3) contains procedure get_value end type test_type interface test_type procedure test_type_initialiser end interface test_type contains function test_type_initialiser() result(new_test) implicit none type(test_type) :: new_test integer :: i new_test%thing = stuff_type( 4 ) do i = 1, 3 new_test%things(i) = stuff_type( i ) end do end function test_type_initialiser function get_value( this ) result(value) implicit none class(test_type) :: this integer :: value integer :: i value = this%thing%get_junk() do i = 1, 3 value = value + this%things(i)%get_junk() end do end function get_value end module test_mod program test use stuff_mod, only : stuff_type, final_calls use test_mod, only : test_type implicit none call here() call in_type() ! 21 calls to scalar finalizer and 4 to the vector version if (final_calls .ne. 421) stop 1 contains subroutine here() implicit none type(stuff_type) :: thing type(stuff_type) :: bits(3) integer :: i integer :: tally thing = stuff_type(4) do i = 1, 3 bits(i) = stuff_type(i) end do tally = thing%get_junk() do i = 1, 3 tally = tally + bits(i)%get_junk() end do if (tally .ne. 10) stop 2 end subroutine here subroutine in_type() implicit none type(test_type) :: thing thing = test_type() if (thing%get_value() .ne. 10) stop 2 end subroutine in_type end program test
! { dg-do run } ! ! Test the fix for PR67444 in which the finalization of a polymorphic 'var' ! was not being finalized before assignment. (STOP 3) ! ! Contributed by Balint Aradi <bal...@gmail.com> ! module classes implicit none integer :: ivalue = 0 integer :: icall = 0 integer :: fvalue = 0 type :: Basic integer :: ii = -1 contains procedure :: assignBasic generic :: assignment(=) => assignBasic final :: destructBasic end type Basic interface Basic module procedure initBasic end interface Basic contains function initBasic(initValue) result(this) integer, intent(in) :: initValue type(Basic) :: this this%ii = initValue icall = icall + 1 end function initBasic subroutine assignBasic(this, other) class(Basic), intent(out) :: this type(Basic), intent(in) :: other this%ii = other%ii + 1 icall = other%ii end subroutine assignBasic subroutine destructBasic(this) type(Basic), intent(inout) :: this fvalue = fvalue + 1 select case (fvalue) case (1) if (this%ii /= -1) stop 1 ! First finalization before assignment to 'var' if (icall /= 1) stop 2 ! and before evaluation of 'expr'. case(2) if (this%ii /= ivalue) stop 3 ! Finalization of intent(out) in 'assignBasic' if (icall /= 42) stop 4 ! and after evaluation of 'expr'. case(3) if (this%ii /= ivalue + 1) stop 5 ! Finalization of 'expr' (function!) after assignment. case default stop 6 ! Too many or no finalizations end select end subroutine destructBasic end module classes module usage use classes implicit none contains subroutine useBasic() type(Basic) :: bas ivalue = 42 bas = Basic(ivalue) end subroutine useBasic end module usage program test use usage implicit none call useBasic() if (fvalue /= 3) stop 7 ! 3 finalizations mandated. end program test
! { dg-do run } ! ! Test the fix for PR80524, where gfortran on issued one final call ! For 'u' going out of scope. Two further call should be emitted; one ! for the lhs of the assignment in 's' and the other for the function ! result, which occurs after assignment. ! ! Contributed by Andrew Wood <and...@fluidgravity.co.uk> ! MODULE m1 IMPLICIT NONE integer :: counter = 0 integer :: fval = 0 TYPE t INTEGER :: i CONTAINS FINAL :: t_final END TYPE t CONTAINS SUBROUTINE t_final(this) TYPE(t) :: this counter = counter + 1 END SUBROUTINE FUNCTION new_t() TYPE(t) :: new_t new_t%i = 1 fval = new_t%i if (counter /= 0) stop 1 ! Finalization of 'var' after evaluation of 'expr' END FUNCTION new_t SUBROUTINE s TYPE(t) :: u u = new_t() if (counter /= 2) stop 2 ! Finalization of 'var' and 'expr' END SUBROUTINE s END MODULE m1 PROGRAM prog USE m1 IMPLICIT NONE CALL s if (counter /= 3) stop 3 ! Finalization of 'u' in 's' END PROGRAM prog
! { dg-do run } ! ! Test the fix for pr88735 in which non-finalizable entities were being ! finalized because they had finalizable components and 'var' in defined ! assignments was being finalized. ! ! Contributed by Martin Stein <ms...@gmx.net> ! module mod implicit none type, public :: t integer, allocatable :: i contains procedure, public :: set generic, public :: assignment(=) => set final :: finalise end type t integer, public :: final_count = 0 contains subroutine set(self, x) class(t), intent(inout) :: self class(t), intent(in) :: x if (allocated(x%i)) then self%i = x%i self%i = self%i + 1 end if end subroutine set subroutine finalise(self) type(t), intent(inout) :: self if (allocated(self%i)) then final_count = final_count + 1 deallocate(self%i) end if end subroutine finalise end module mod program finalise_assign use mod implicit none type :: s type(t) :: x end type s type(s) :: a, b type(t) :: c a%x%i = 123 ! Produces no final calls because 'b' is not a 'finalizable entity'. b = a if (final_count /= 0) stop 1 ! Produces no final calls because this is a defined assignment. c = a%x if (final_count /= 0) stop 2 end program finalise_assign
! { dg-do run } ! ! Test the fix for all three variants of PR82996, which used to ! segfault in the original testcase and ICE in the testcases of ! comments 1 and 2. ! ! Contributed by Neil Carlson <neil.n.carl...@gmail.com> ! module mod0 integer :: final_count_foo = 0 integer :: final_count_bar = 0 end module mod0 ! ! This is the original testcase, with a final routine 'foo' but ! but not in the container type 'bar1'. ! module mod1 use mod0 private foo, foo_destroy type foo integer, pointer :: f(:) => null() contains final :: foo_destroy end type type bar1 type(foo) :: b(2) end type contains impure elemental subroutine foo_destroy(this) type(foo), intent(inout) :: this final_count_foo = final_count_foo + 1 if (associated(this%f)) deallocate(this%f) end subroutine end module mod1 ! ! Comment 1 was the same as original, except that the ! 'foo' finalizer is elemental and a 'bar' finalizer is added.. ! module mod2 use mod0 private foo, foo_destroy, bar_destroy type foo integer, pointer :: f(:) => null() contains final :: foo_destroy end type type bar2 type(foo) :: b(2) contains final :: bar_destroy end type contains impure elemental subroutine foo_destroy(this) type(foo), intent(inout) :: this final_count_foo = final_count_foo + 1 if (associated(this%f)) deallocate(this%f) end subroutine subroutine bar_destroy(this) type(bar2), intent(inout) :: this final_count_bar = final_count_bar + 1 call foo_destroy(this%b) end subroutine end module mod2 ! ! Comment 2 was the same as comment 1, except that the 'foo' ! finalizer is no longer elemental. ! module mod3 use mod0 private foo, foo_destroy, bar_destroy type foo integer, pointer :: f(:) => null() contains final :: foo_destroy end type type bar3 type(foo) :: b(2) contains final :: bar_destroy end type contains subroutine foo_destroy(this) type(foo), intent(inout) :: this final_count_foo = final_count_foo + 1 if (associated(this%f)) deallocate(this%f) end subroutine subroutine bar_destroy(this) type(bar3), intent(inout) :: this final_count_bar = final_count_bar + 1 do j = 1, size(this%b) call foo_destroy(this%b(j)) end do end subroutine end module mod3 program main use mod0 use mod1 use mod2 use mod3 type(bar1) :: x type(bar2) :: y type(bar3) :: z call sub1(x) if (final_count_foo /= 2) stop 1 if (final_count_bar /= 0) stop 2 call sub2(y) if (final_count_foo /= 6) stop 3 if (final_count_bar /= 1) stop 4 call sub3(z) if (final_count_foo /= 8) stop 5 if (final_count_bar /= 2) stop 6 contains subroutine sub1(x) type(bar1), intent(out) :: x end subroutine subroutine sub2(x) type(bar2), intent(out) :: x end subroutine subroutine sub3(x) type(bar3), intent(out) :: x end subroutine end program
! { dg-do run } ! ! Test the fix for pr91396 in which some of the expected finalizations ! did not occur; within s3 and s4 scopes. ! ! Contributed by Jose Rui Faustine de Sousa <jrfso...@gcc.gnu.org> ! module final_m implicit none private public :: & assignment(=) public :: & final_t integer, public :: final_count public :: & final_init, & final_set, & final_get, & final_end type :: final_t private integer :: n = -1 contains final :: final_end end type final_t interface assignment(=) module procedure final_init end interface assignment(=) contains elemental subroutine final_init(this, n) type(final_t), intent(out) :: this integer, intent(in) :: n this%n = n return end subroutine final_init elemental function final_set(n) result(this) integer, intent(in) :: n type(final_t) :: this this%n = n return end function final_set elemental function final_get(this) result(n) type(final_t), intent(in) :: this integer :: n n = this%n return end function final_get subroutine final_end(this) type(final_t), intent(inout) :: this final_count = final_count + 1 this%n = -1 return end subroutine final_end end module final_m program final_p use final_m implicit none type(final_t) :: f0 ! print *, "enter main" call final_init(f0, 0) ! print *, "enter final_s1" call final_s1() ! print *, "exit final_s1" ! print *, "enter final_s2" call final_s2() ! print *, "exit final_s2" ! print *, "enter final_s3" call final_s3() ! print *, "exit final_s3" ! print *, "enter final_s4" call final_s4() ! print *, "exit final_s4" ! print *, "f0: ", final_get(f0) ! this should be automatic... call final_end(f0) if (final_count /= 10) stop 1 stop contains subroutine final_s1() type(final_t) :: f call final_init(f, 1) print *, "f1: ", final_get(f) ! Two finalizations for INTENT(OUT) in final_init this scope and main program. if (final_count /= 2) stop 2 return end subroutine final_s1 subroutine final_s2() type(final_t) :: f f = 2 ! One finalization for INTENT(OUT) in final_init, used in the defined assignment ! and one for leaving 's1' scope. if (final_count /= 4) stop 3 print *, "f2: ", final_get(f) return end subroutine final_s2 subroutine final_s3() type(final_t) :: f f = final_set(3) print *, "f3: ", final_get(f) ! One finalization for 'var, in the assignment, one for the result of final_set ! and one for leaving 's2' scope. if (final_count /= 7) stop 4 return end subroutine final_s3 subroutine final_s4() print *, "f4: ", final_get(final_set(4)), " ", final_count ! One finalization for the result of final_set and one for leaving 's3' scope. return end subroutine final_s4 end program final_p
! { dg-do run } ! ! Test the fix for PR84472 in which the finalizations around the ! assignment in 'mymain' were not happening. ! ! Contributed by Vipul Parekh <fortran...@outlook.com> ! module m use, intrinsic :: iso_fortran_env, only : output_unit implicit none private integer, public :: final_counts = 0 integer, public :: assoc_counts = 0 type :: t private character(len=:), pointer :: m_s => null() contains private final :: final_t procedure, pass(this), public :: clean => clean_t procedure, pass(this), public :: init => init_t end type interface t module procedure :: construct_t end interface public :: t contains function construct_t( name ) result(new_t) ! argument list character(len=*), intent(in), optional :: name ! function result type(t) :: new_t if ( present(name) ) then call new_t%init( name ) end if end function subroutine final_t( this ) ! argument list type(t), intent(inout) :: this final_counts = final_counts + 1 if ( associated(this%m_s) ) then assoc_counts = assoc_counts + 1 endif call clean_t( this ) end subroutine subroutine clean_t( this ) ! argument list class(t), intent(inout) :: this if ( associated(this%m_s) ) then deallocate( this%m_s ) end if this%m_s => null() end subroutine subroutine init_t( this, mname ) ! argument list class(t), intent(inout) :: this character(len=*), intent(in) :: mname call this%clean() allocate(character(len(mname)) :: this%m_s) this%m_s = mname end subroutine end module use m, only : final_counts, assoc_counts call mymain if (final_counts /= 3) stop 1 if (assoc_counts /= 2) stop 2 contains subroutine mymain use m, only : t implicit none character(3), allocatable, target :: myname type(t) :: foo call foo%init( mname="123" ) myname = "foo" foo = t( myname ) call foo%clean() if (final_counts /= 2) stop 3 if (assoc_counts /= 2) stop 4 end end