PR c++/100828
gcc/cp/ChangeLog:
* logic.cc (formula::formula): Use emplace_back.
(formula::branch): Insert a copy of m_current in front of
m_current instead of at the end of the list.
(formula::erase): Define.
(decompose_formula): Remove.
(decompose_antecedents): Remove.
(decompose_consequents): Remove.
(derive_proofs): Remove.
(max_problem_size): Remove.
(diagnose_constraint_size): Remove.
(subsumes_constraints_nonnull): Rewrite directly in terms of
decompose_clause and derive_proof, interleaving decomposition
with implication checking. Use formula::erase to free the
current clause before moving on to the next one.
---
gcc/cp/logic.cc | 118
++++++++++++++----------------------------------
1 file changed, 35 insertions(+), 83 deletions(-)
diff --git a/gcc/cp/logic.cc b/gcc/cp/logic.cc
index 142457e408a..3f872c11fe2 100644
--- a/gcc/cp/logic.cc
+++ b/gcc/cp/logic.cc
@@ -223,9 +223,7 @@ struct formula
formula (tree t)
{
- /* This should call emplace_back(). There's an extra copy being
- invoked by using push_back(). */
- m_clauses.push_back (t);
+ m_clauses.emplace_back (t);
m_current = m_clauses.begin ();
}
@@ -248,8 +246,7 @@ struct formula
clause& branch ()
{
gcc_assert (!done ());
- m_clauses.push_back (*m_current);
- return m_clauses.back ();
+ return *m_clauses.insert (std::next (m_current), *m_current);
}
/* Returns the position of the current clause. */
@@ -287,6 +284,14 @@ struct formula
return m_clauses.end ();
}
+ /* Remove the specified clause. */
+
+ void erase (iterator i)
+ {
+ gcc_assert (i != m_current);
+ m_clauses.erase (i);
+ }
+
std::list<clause> m_clauses; /* The list of clauses. */
iterator m_current; /* The current clause. */
};
@@ -659,39 +664,6 @@ decompose_clause (formula& f, clause& c, rules r)
f.advance ();
}
-/* Decompose the logical formula F according to the logical
- rules determined by R. The result is a formula containing
- clauses that contain only atomic terms. */
-
-void
-decompose_formula (formula& f, rules r)
-{
- while (!f.done ())
- decompose_clause (f, *f.current (), r);
-}
-
-/* Fully decomposing T into a list of sequents, each comprised of
- a list of atomic constraints, as if T were an antecedent. */
-
-static formula
-decompose_antecedents (tree t)
-{
- formula f (t);
- decompose_formula (f, left);
- return f;
-}
-
-/* Fully decomposing T into a list of sequents, each comprised of
- a list of atomic constraints, as if T were a consequent. */
-
-static formula
-decompose_consequents (tree t)
-{
- formula f (t);
- decompose_formula (f, right);
- return f;
-}
-
static bool derive_proof (clause&, tree, rules);
/* Derive a proof of both operands of T. */
@@ -744,28 +716,6 @@ derive_proof (clause& c, tree t, rules r)
}
}
-/* Derive a proof of T from disjunctive clauses in F. */
-
-static bool
-derive_proofs (formula& f, tree t, rules r)
-{
- for (formula::iterator i = f.begin(); i != f.end(); ++i)
- if (!derive_proof (*i, t, r))
- return false;
- return true;
-}
-
-/* The largest number of clauses in CNF or DNF we accept as input
- for subsumption. This an upper bound of 2^16 expressions. */
-static int max_problem_size = 16;
-
-static inline bool
-diagnose_constraint_size (tree t)
-{
- error_at (input_location, "%qE exceeds the maximum constraint
complexity", t);
- return false;
-}
-
/* Key/value pair for caching subsumption results. This associates a
pair of
constraints with a boolean value indicating the result. */
@@ -845,31 +795,33 @@ subsumes_constraints_nonnull (tree lhs, tree rhs)
if (bool *b = lookup_subsumption(lhs, rhs))
return *b;
- int n1 = dnf_size (lhs);
- int n2 = cnf_size (rhs);
-
- /* Make sure we haven't exceeded the largest acceptable problem. */
- if (std::min (n1, n2) >= max_problem_size)
- {
- if (n1 < n2)
- diagnose_constraint_size (lhs);
- else
- diagnose_constraint_size (rhs);
- return false;
- }
-
- /* Decompose the smaller of the two formulas, and recursively
- check for implication of the larger. */
- bool result;
- if (n1 <= n2)
- {
- formula dnf = decompose_antecedents (lhs);
- result = derive_proofs (dnf, rhs, left);
- }
+ tree x, y;
+ rules r;
+ if (dnf_size (lhs) <= cnf_size (rhs))
+ /* When LHS looks simpler than RHS, we'll determine subsumption by
+ decomposing LHS into its disjunctive normal form and checking
that
+ each (conjunctive) clause implies RHS. */
+ x = lhs, y = rhs, r = left;
else
+ /* Otherwise, we'll determine subsumption by decomposing RHS into
its
+ conjunctive normal form and checking that each (disjunctive)
clause
+ implies LHS. */
+ x = rhs, y = lhs, r = right;
+
+ /* Decompose X into a list of sequents according to R, and
recursively
+ check for implication of Y. */
+ bool result = true;
+ formula f (x);
+ while (!f.done ())
{
- formula cnf = decompose_consequents (rhs);
- result = derive_proofs (cnf, lhs, right);
+ auto i = f.current ();
+ decompose_clause (f, *i, r);
+ if (!derive_proof (*i, y, r))
+ {
+ result = false;
+ break;
+ }
+ f.erase (i);
}
return save_subsumption (lhs, rhs, result);