This patch uses a more accurate scalar iteration estimate when comparing the epilogue of a constant-iteration loop with a candidate replacement epilogue.
In the testcase, the patch prevents a 1-to-3-element SVE epilogue from seeming better than a 64-bit Advanced SIMD epilogue. Tested on aarch64-linux-gnu and x86_64-linux-gnu. OK to install? Richard gcc/ * tree-vect-loop.c (vect_better_loop_vinfo_p): Detect cases in which old_loop_vinfo is an epilogue loop that handles a constant number of iterations. gcc/testsuite/ * gcc.target/aarch64/sve/cost_model_12.c: New test. --- .../gcc.target/aarch64/sve/cost_model_12.c | 19 +++++++++++++++++++ gcc/tree-vect-loop.c | 10 +++++++++- 2 files changed, 28 insertions(+), 1 deletion(-) create mode 100644 gcc/testsuite/gcc.target/aarch64/sve/cost_model_12.c diff --git a/gcc/tree-vect-loop.c b/gcc/tree-vect-loop.c index 0009d0964af..0a5b65adb04 100644 --- a/gcc/tree-vect-loop.c +++ b/gcc/tree-vect-loop.c @@ -2778,7 +2778,15 @@ vect_better_loop_vinfo_p (loop_vec_info new_loop_vinfo, /* Limit the VFs to what is likely to be the maximum number of iterations, to handle cases in which at least one loop_vinfo is fully-masked. */ - HOST_WIDE_INT estimated_max_niter = likely_max_stmt_executions_int (loop); + HOST_WIDE_INT estimated_max_niter; + loop_vec_info main_loop = LOOP_VINFO_ORIG_LOOP_INFO (old_loop_vinfo); + unsigned HOST_WIDE_INT main_vf; + if (main_loop + && LOOP_VINFO_NITERS_KNOWN_P (main_loop) + && LOOP_VINFO_VECT_FACTOR (main_loop).is_constant (&main_vf)) + estimated_max_niter = LOOP_VINFO_INT_NITERS (main_loop) % main_vf; + else + estimated_max_niter = likely_max_stmt_executions_int (loop); if (estimated_max_niter != -1) { if (known_le (estimated_max_niter, new_vf)) diff --git a/gcc/testsuite/gcc.target/aarch64/sve/cost_model_12.c b/gcc/testsuite/gcc.target/aarch64/sve/cost_model_12.c new file mode 100644 index 00000000000..4c5226e05de --- /dev/null +++ b/gcc/testsuite/gcc.target/aarch64/sve/cost_model_12.c @@ -0,0 +1,19 @@ +/* { dg-options "-O3 -mtune=neoverse-512tvb" } */ + +void +f (float x[restrict 10][1024], + float y[restrict 10][1024], float z) +{ + for (int i = 0; i < 10; ++i) + { +#pragma GCC unroll 10 + for (int j = 0; j < 10; ++j) + x[j][i] = y[j][i] * z; + } +} + +/* We should unroll the outer loop, with 2x 16-byte vectors and 1x + 8-byte vectors. */ +/* { dg-final { scan-assembler-not {\tptrue\t} } } */ +/* { dg-final { scan-assembler {\tv[0-9]+\.4s,} } } */ +/* { dg-final { scan-assembler {\tv[0-9]+\.2s,} } } */