On Wed, May 19, 2021 at 02:32:02PM +0200, Tobias Burnus wrote: > Regarding gfortran.dg/pr96711.f90: > > On my x86-64-gnu-linux, it PASSes. > On our powerpc64le-linux-gnu it FAILS with > 'STOP 3' (→ also scan-dump count) and 'STOP 4'. > > Contrary to PR96983's bug summary, I don't get an ICE. > > > On powerpc64le-linux-gnu, the following condition evaluates true (→ 'STOP > 3'): > > real(16) :: y ! 128bit REAL > integer(16), parameter :: k2 = nint (2 / epsilon (y), kind(k2)) > integer(16), parameter :: m2 = 10384593717069655257060992658440192_16 > !2**113 > if (k2 /= m2) stop 3 > > On x86_64-linux-gnu, k2 == m2 — but on powerpc64le-linux-gnu, > k2 == 2**106 instead of 2**113. > > My solution is to permit also 2**106 besides 2**113. > > @PowerPC maintainers: Does this make sense? – It seems to work on our > PowerPC > but with all the new 'long double' changes, does it also work for you?
I do not understand Fortran well enough, could you explain what the code is supposed to do? > PR fortran/96983 > * gfortran.dg/pr96711.f90: You're missing the actual entry here, fwiw. > - integer(16), parameter :: m2 = 10384593717069655257060992658440192_16 > !2**113 > + integer(16), parameter :: m2 = 10384593717069655257060992658440192_16 > !2**113 ! Some systems like x86-64 > + integer(16), parameter :: m2a = 81129638414606681695789005144064_16 > !2**106 ! Some systems like PowerPC If you use double-double ("ibm long double") a number is represented as the sum of two double precision numbers, while if you use IEEE quad precision floating point you get a 112-bit fraction (and a leading one). The most significant of the two DP numbers is the whole rounded to DP. The actual precision varies, it depends on various factors :-/ Segher > integer(16), volatile :: m > x = 2 / epsilon (x) > y = 2 / epsilon (y) > m = nint (x, kind(m)) > ! print *, m > if (k1 /= m1) stop 1 > if (m /= m1) stop 2 > m = nint (y, kind(m)) > ! print *, m > - if (k2 /= m2) stop 3 > - if (m /= m2) stop 4 > + if (k2 /= m2 .and. k2 /= m2a) stop 3 > + if (m /= m2 .and. m /= m2a) stop 4 > end program