Hi! This insn and split splits into HI->V?HImode broadcast for avx2 and later, but either the operands need to be %xmm0-%xmm15 (i.e. VEX encoded insn), or the insn needs both AVX512BW and AVX512VL. Now, Yv constraint is v for AVX512VL and x otherwise, so for -mavx512vl -mno-avx512bw we ICE if we end up with a %xmm16+ register from RA. Yw constraint is v for AVX512VL and AVX512BW and nothing otherwise, so in this pattern we actually need xYw.
Fixed thusly, bootstrapped/regtested on x86_64-linux and i686-linux, ok for trunk? 2020-05-05 Jakub Jelinek <ja...@redhat.com> PR target/94942 * config/i386/mmx.md (*vec_dupv4hi): Use xYw constraints instead of Yv. * gcc.target/i386/pr94942.c: New test. --- gcc/config/i386/mmx.md.jj 2020-03-12 14:28:13.343364091 +0100 +++ gcc/config/i386/mmx.md 2020-05-04 13:48:14.946723617 +0200 @@ -1613,10 +1613,10 @@ (define_insn "mmx_pswapdv2si2" (set_attr "mode" "DI")]) (define_insn_and_split "*vec_dupv4hi" - [(set (match_operand:V4HI 0 "register_operand" "=y,Yv,Yw") + [(set (match_operand:V4HI 0 "register_operand" "=y,xYw,Yw") (vec_duplicate:V4HI (truncate:HI - (match_operand:SI 1 "register_operand" "0,Yv,r"))))] + (match_operand:SI 1 "register_operand" "0,xYw,r"))))] "(TARGET_MMX || TARGET_MMX_WITH_SSE) && (TARGET_SSE || TARGET_3DNOW_A)" "@ --- gcc/testsuite/gcc.target/i386/pr94942.c.jj 2020-05-04 13:51:56.512495800 +0200 +++ gcc/testsuite/gcc.target/i386/pr94942.c 2020-05-04 13:52:43.926805052 +0200 @@ -0,0 +1,24 @@ +/* PR target/94942 */ +/* { dg-do compile } */ +/* { dg-options "-O -flive-range-shrinkage -ftree-vrp -mavx512vl -mno-avx512bw -Wno-div-by-zero" } */ + +typedef unsigned __attribute__((__vector_size__(8))) U; +typedef short __attribute__((__vector_size__(8))) V; +typedef char __attribute__((__vector_size__(16))) W; +typedef int __attribute__((__vector_size__(16))) Z; +int i, j, n, o; +W k; +Z l; +char m; + +U +foo (U q, long long r, V s) +{ + Z t = (i & i - (Z){10} & 4) - (0 != j); + Z u = o * (j * l); + s -= (char)__builtin_clrsbll (n); + W v = (k | k >> m + (W){4}) % 0; + W w = v + (W)t + (W)u; + U x = ((union { W a; U b; })w).b + q + (U)s + (U)r; + return x; +} Jakub