This patch is the main part of PR85694. The aim is to recognise at least: signed char *a, *b, *c; ... for (int i = 0; i < 2048; i++) c[i] = (a[i] + b[i]) >> 1;
as an over-widening pattern, since the addition and shift can be done on shorts rather than ints. However, it ended up being a lot more general than that. The current over-widening pattern detection is limited to a few simple cases: logical ops with immediate second operands, and shifts by a constant. These cases are enough for common pixel-format conversion and can be detected in a peephole way. The loop above requires two generalisations of the current code: support for addition as well as logical ops, and support for non-constant second operands. These are harder to detect in the same peephole way, so the patch tries to take a more global approach. The idea is to get information about the minimum operation width in two ways: (1) by using the range information attached to the SSA_NAMEs (effectively a forward walk, since the range info is context-independent). (2) by back-propagating the number of output bits required by users of the result. As explained in the comments, there's a balance to be struck between narrowing an individual operation and fitting in with the surrounding code. The approach is pretty conservative: if we could narrow an operation to N bits without changing its semantics, it's OK to do that if: - no operations later in the chain require more than N bits; or - all internally-defined inputs are extended from N bits or fewer, and at least one of them is single-use. See the comments for the rationale. I didn't bother adding STMT_VINFO_* wrappers for the new fields since the code seemed more readable without. Tested on aarch64-linux-gnu and x86_64-linux-gnu. OK to install? Richard 2018-06-20 Richard Sandiford <richard.sandif...@arm.com> gcc/ * poly-int.h (print_hex): New function. * dumpfile.h (dump_dec, dump_hex): Declare. * dumpfile.c (dump_dec, dump_hex): New poly_wide_int functions. * tree-vectorizer.h (_stmt_vec_info): Add min_output_precision, min_input_precision, operation_precision and operation_sign. * tree-vect-patterns.c (vect_get_range_info): New function. (vect_same_loop_or_bb_p, vect_single_imm_use) (vect_operation_fits_smaller_type): Delete. (vect_look_through_possible_promotion): Add an optional single_use_p parameter. (vect_recog_over_widening_pattern): Rewrite to use new stmt_vec_info infomration. Handle one operation at a time. (vect_recog_cast_forwprop_pattern, vect_narrowable_type_p) (vect_truncatable_operation_p, vect_set_operation_type) (vect_set_min_input_precision): New functions. (vect_determine_min_output_precision_1): Likewise. (vect_determine_min_output_precision): Likewise. (vect_determine_precisions_from_range): Likewise. (vect_determine_precisions_from_users): Likewise. (vect_determine_stmt_precisions, vect_determine_precisions): Likewise. (vect_vect_recog_func_ptrs): Put over_widening first. Add cast_forwprop. (vect_pattern_recog): Call vect_determine_precisions. gcc/testsuite/ * gcc.dg/vect/vect-over-widen-1.c: Update the scan tests for new over-widening messages. * gcc.dg/vect/vect-over-widen-1-big-array.c: Likewise. * gcc.dg/vect/vect-over-widen-2.c: Likewise. * gcc.dg/vect/vect-over-widen-2-big-array.c: Likewise. * gcc.dg/vect/vect-over-widen-3.c: Likewise. * gcc.dg/vect/vect-over-widen-3-big-array.c: Likewise. * gcc.dg/vect/vect-over-widen-4.c: Likewise. * gcc.dg/vect/vect-over-widen-4-big-array.c: Likewise. * gcc.dg/vect/bb-slp-over-widen-1.c: New test. * gcc.dg/vect/bb-slp-over-widen-2.c: Likewise. * gcc.dg/vect/vect-over-widen-5.c: Likewise. * gcc.dg/vect/vect-over-widen-6.c: Likewise. * gcc.dg/vect/vect-over-widen-7.c: Likewise. * gcc.dg/vect/vect-over-widen-8.c: Likewise. * gcc.dg/vect/vect-over-widen-9.c: Likewise. * gcc.dg/vect/vect-over-widen-10.c: Likewise. * gcc.dg/vect/vect-over-widen-11.c: Likewise. * gcc.dg/vect/vect-over-widen-12.c: Likewise. * gcc.dg/vect/vect-over-widen-13.c: Likewise. * gcc.dg/vect/vect-over-widen-14.c: Likewise. * gcc.dg/vect/vect-over-widen-15.c: Likewise. * gcc.dg/vect/vect-over-widen-16.c: Likewise. * gcc.dg/vect/vect-over-widen-17.c: Likewise. * gcc.dg/vect/vect-over-widen-18.c: Likewise. * gcc.dg/vect/vect-over-widen-19.c: Likewise. * gcc.dg/vect/vect-over-widen-20.c: Likewise. * gcc.dg/vect/vect-over-widen-21.c: Likewise. Index: gcc/poly-int.h =================================================================== *** gcc/poly-int.h 2018-06-20 11:36:19.000000000 +0100 --- gcc/poly-int.h 2018-06-20 11:36:20.135890693 +0100 *************** print_dec (const poly_int_pod<N, C> &val *** 2420,2425 **** --- 2420,2444 ---- poly_coeff_traits<C>::signedness ? SIGNED : UNSIGNED); } + /* Use print_hex to print VALUE to FILE. */ + + template<unsigned int N, typename C> + void + print_hex (const poly_int_pod<N, C> &value, FILE *file) + { + if (value.is_constant ()) + print_hex (value.coeffs[0], file); + else + { + fprintf (file, "["); + for (unsigned int i = 0; i < N; ++i) + { + print_hex (value.coeffs[i], file); + fputc (i == N - 1 ? ']' : ',', file); + } + } + } + /* Helper for calculating the distance between two points P1 and P2, in cases where known_le (P1, P2). T1 and T2 are the types of the two positions, in either order. The coefficients of P2 - P1 have Index: gcc/dumpfile.h =================================================================== *** gcc/dumpfile.h 2018-06-20 11:36:19.000000000 +0100 --- gcc/dumpfile.h 2018-06-20 11:36:20.131890728 +0100 *************** extern bool enable_rtl_dump_file (void); *** 288,293 **** --- 288,295 ---- template<unsigned int N, typename C> void dump_dec (dump_flags_t, const poly_int<N, C> &); + extern void dump_dec (dump_flags_t, const poly_wide_int &, signop); + extern void dump_hex (dump_flags_t, const poly_wide_int &); /* In tree-dump.c */ extern void dump_node (const_tree, dump_flags_t, FILE *); Index: gcc/dumpfile.c =================================================================== *** gcc/dumpfile.c 2018-06-20 11:36:19.000000000 +0100 --- gcc/dumpfile.c 2018-06-20 11:36:20.131890728 +0100 *************** template void dump_dec (dump_flags_t, co *** 512,517 **** --- 512,539 ---- template void dump_dec (dump_flags_t, const poly_offset_int &); template void dump_dec (dump_flags_t, const poly_widest_int &); + void + dump_dec (dump_flags_t dump_kind, const poly_wide_int &value, signop sgn) + { + if (dump_file && (dump_kind & pflags)) + print_dec (value, dump_file, sgn); + + if (alt_dump_file && (dump_kind & alt_flags)) + print_dec (value, alt_dump_file, sgn); + } + + /* Output VALUE in hexadecimal to appropriate dump streams. */ + + void + dump_hex (dump_flags_t dump_kind, const poly_wide_int &value) + { + if (dump_file && (dump_kind & pflags)) + print_hex (value, dump_file); + + if (alt_dump_file && (dump_kind & alt_flags)) + print_hex (value, alt_dump_file); + } + /* Start a dump for PHASE. Store user-supplied dump flags in *FLAG_PTR. Return the number of streams opened. Set globals DUMP_FILE, and ALT_DUMP_FILE to point to the opened streams, and Index: gcc/tree-vectorizer.h =================================================================== *** gcc/tree-vectorizer.h 2018-06-20 11:36:19.000000000 +0100 --- gcc/tree-vectorizer.h 2018-06-20 11:36:20.139890658 +0100 *************** typedef struct _stmt_vec_info { *** 872,877 **** --- 872,892 ---- /* The number of scalar stmt references from active SLP instances. */ unsigned int num_slp_uses; + + /* If nonzero, the lhs of the statement could be truncated to this + many bits without affecting any users of the result. */ + unsigned int min_output_precision; + + /* If nonzero, all non-boolean input operands have the same precision, + and they could each be truncated to this many bits without changing + the result. */ + unsigned int min_input_precision; + + /* If OPERATION_BITS is nonzero, the statement could be performed on + an integer with the sign and number of bits given by OPERATION_SIGN + and OPERATION_BITS without changing the result. */ + unsigned int operation_precision; + signop operation_sign; } *stmt_vec_info; /* Information about a gather/scatter call. */ Index: gcc/tree-vect-patterns.c =================================================================== *** gcc/tree-vect-patterns.c 2018-06-20 11:36:19.000000000 +0100 --- gcc/tree-vect-patterns.c 2018-06-20 11:36:20.139890658 +0100 *************** Software Foundation; either version 3, o *** 47,52 **** --- 47,86 ---- #include "omp-simd-clone.h" #include "predict.h" + /* Return true if we have a useful VR_RANGE range for VAR, storing it + in *MIN_VALUE and *MAX_VALUE if so. Note the range in the dump files. */ + + static bool + vect_get_range_info (tree var, wide_int *min_value, wide_int *max_value) + { + value_range_type vr_type = get_range_info (var, min_value, max_value); + wide_int nonzero = get_nonzero_bits (var); + signop sgn = TYPE_SIGN (TREE_TYPE (var)); + if (intersect_range_with_nonzero_bits (vr_type, min_value, max_value, + nonzero, sgn) == VR_RANGE) + { + if (dump_enabled_p ()) + { + dump_generic_expr_loc (MSG_NOTE, vect_location, TDF_SLIM, var); + dump_printf (MSG_NOTE, " has range ["); + dump_hex (MSG_NOTE, *min_value); + dump_printf (MSG_NOTE, ", "); + dump_hex (MSG_NOTE, *max_value); + dump_printf (MSG_NOTE, "]\n"); + } + return true; + } + else + { + if (dump_enabled_p ()) + { + dump_generic_expr_loc (MSG_NOTE, vect_location, TDF_SLIM, var); + dump_printf (MSG_NOTE, " has no range info\n"); + } + return false; + } + } + /* Report that we've found an instance of pattern PATTERN in statement STMT. */ *************** vect_supportable_direct_optab_p (tree ot *** 190,229 **** return true; } - /* Check whether STMT2 is in the same loop or basic block as STMT1. - Which of the two applies depends on whether we're currently doing - loop-based or basic-block-based vectorization, as determined by - the vinfo_for_stmt for STMT1 (which must be defined). - - If this returns true, vinfo_for_stmt for STMT2 is guaranteed - to be defined as well. */ - - static bool - vect_same_loop_or_bb_p (gimple *stmt1, gimple *stmt2) - { - stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt1); - return vect_stmt_in_region_p (stmt_vinfo->vinfo, stmt2); - } - - /* If the LHS of DEF_STMT has a single use, and that statement is - in the same loop or basic block, return it. */ - - static gimple * - vect_single_imm_use (gimple *def_stmt) - { - tree lhs = gimple_assign_lhs (def_stmt); - use_operand_p use_p; - gimple *use_stmt; - - if (!single_imm_use (lhs, &use_p, &use_stmt)) - return NULL; - - if (!vect_same_loop_or_bb_p (def_stmt, use_stmt)) - return NULL; - - return use_stmt; - } - /* If OP is defined by a statement that's being considered for vectorization, return information about that statement, otherwise return NULL. */ --- 224,229 ---- *************** vect_unpromoted_value::set_op (tree op_i *** 341,347 **** is possible to convert OP' back to OP using a possible sign change followed by a possible promotion P. Return this OP', or null if OP is not a vectorizable SSA name. If there is a promotion P, describe its ! input in UNPROM, otherwise describe OP' in UNPROM. A successful return means that it is possible to go from OP' to OP via UNPROM. The cast from OP' to UNPROM is at most a sign change, --- 341,349 ---- is possible to convert OP' back to OP using a possible sign change followed by a possible promotion P. Return this OP', or null if OP is not a vectorizable SSA name. If there is a promotion P, describe its ! input in UNPROM, otherwise describe OP' in UNPROM. If SINGLE_USE_P ! is nonnull, set *SINGLE_USE_P to false if any of the SSA names involved ! have more than one user. A successful return means that it is possible to go from OP' to OP via UNPROM. The cast from OP' to UNPROM is at most a sign change, *************** vect_unpromoted_value::set_op (tree op_i *** 368,374 **** static tree vect_look_through_possible_promotion (vec_info *vinfo, tree op, ! vect_unpromoted_value *unprom) { tree res = NULL_TREE; tree op_type = TREE_TYPE (op); --- 370,377 ---- static tree vect_look_through_possible_promotion (vec_info *vinfo, tree op, ! vect_unpromoted_value *unprom, ! bool *single_use_p = NULL) { tree res = NULL_TREE; tree op_type = TREE_TYPE (op); *************** vect_look_through_possible_promotion (ve *** 417,422 **** --- 420,430 ---- { def_stmt = vect_look_through_pattern (def_stmt); caster = vinfo_for_stmt (def_stmt); + /* Ignore pattern statements, since we don't link uses for them. */ + if (single_use_p + && !STMT_VINFO_RELATED_STMT (caster) + && !has_single_use (res)) + *single_use_p = false; } else caster = NULL; *************** vect_recog_widen_sum_pattern (vec<gimple *** 1307,1669 **** return pattern_stmt; } ! /* Return TRUE if the operation in STMT can be performed on a smaller type. ! ! Input: ! STMT - a statement to check. ! DEF - we support operations with two operands, one of which is constant. ! The other operand can be defined by a demotion operation, or by a ! previous statement in a sequence of over-promoted operations. In the ! later case DEF is used to replace that operand. (It is defined by a ! pattern statement we created for the previous statement in the ! sequence). ! ! Input/output: ! NEW_TYPE - Output: a smaller type that we are trying to use. Input: if not ! NULL, it's the type of DEF. ! STMTS - additional pattern statements. If a pattern statement (type ! conversion) is created in this function, its original statement is ! added to STMTS. ! Output: ! OP0, OP1 - if the operation fits a smaller type, OP0 and OP1 are the new ! operands to use in the new pattern statement for STMT (will be created ! in vect_recog_over_widening_pattern ()). ! NEW_DEF_STMT - in case DEF has to be promoted, we create two pattern ! statements for STMT: the first one is a type promotion and the second ! one is the operation itself. We return the type promotion statement ! in NEW_DEF_STMT and further store it in STMT_VINFO_PATTERN_DEF_SEQ of ! the second pattern statement. */ ! static bool ! vect_operation_fits_smaller_type (gimple *stmt, tree def, tree *new_type, ! tree *op0, tree *op1, gimple **new_def_stmt, ! vec<gimple *> *stmts) ! { ! enum tree_code code; ! tree const_oprnd, oprnd; ! tree interm_type = NULL_TREE, half_type, new_oprnd, type; ! gimple *def_stmt, *new_stmt; ! bool first = false; ! bool promotion; ! *op0 = NULL_TREE; ! *op1 = NULL_TREE; ! *new_def_stmt = NULL; ! if (!is_gimple_assign (stmt)) ! return false; ! code = gimple_assign_rhs_code (stmt); ! if (code != LSHIFT_EXPR && code != RSHIFT_EXPR ! && code != BIT_IOR_EXPR && code != BIT_XOR_EXPR && code != BIT_AND_EXPR) ! return false; ! oprnd = gimple_assign_rhs1 (stmt); ! const_oprnd = gimple_assign_rhs2 (stmt); ! type = gimple_expr_type (stmt); ! if (TREE_CODE (oprnd) != SSA_NAME ! || TREE_CODE (const_oprnd) != INTEGER_CST) ! return false; ! /* If oprnd has other uses besides that in stmt we cannot mark it ! as being part of a pattern only. */ ! if (!has_single_use (oprnd)) ! return false; ! /* If we are in the middle of a sequence, we use DEF from a previous ! statement. Otherwise, OPRND has to be a result of type promotion. */ ! if (*new_type) ! { ! half_type = *new_type; ! oprnd = def; ! } ! else { ! first = true; ! if (!type_conversion_p (oprnd, stmt, false, &half_type, &def_stmt, ! &promotion) ! || !promotion ! || !vect_same_loop_or_bb_p (stmt, def_stmt)) ! return false; } ! /* Can we perform the operation on a smaller type? */ ! switch (code) ! { ! case BIT_IOR_EXPR: ! case BIT_XOR_EXPR: ! case BIT_AND_EXPR: ! if (!int_fits_type_p (const_oprnd, half_type)) ! { ! /* HALF_TYPE is not enough. Try a bigger type if possible. */ ! if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4)) ! return false; ! ! interm_type = build_nonstandard_integer_type ( ! TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type)); ! if (!int_fits_type_p (const_oprnd, interm_type)) ! return false; ! } ! ! break; ! ! case LSHIFT_EXPR: ! /* Try intermediate type - HALF_TYPE is not enough for sure. */ ! if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4)) ! return false; ! ! /* Check that HALF_TYPE size + shift amount <= INTERM_TYPE size. ! (e.g., if the original value was char, the shift amount is at most 8 ! if we want to use short). */ ! if (compare_tree_int (const_oprnd, TYPE_PRECISION (half_type)) == 1) ! return false; ! ! interm_type = build_nonstandard_integer_type ( ! TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type)); ! ! if (!vect_supportable_shift (code, interm_type)) ! return false; ! ! break; ! ! case RSHIFT_EXPR: ! if (vect_supportable_shift (code, half_type)) ! break; ! ! /* Try intermediate type - HALF_TYPE is not supported. */ ! if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4)) ! return false; ! ! interm_type = build_nonstandard_integer_type ( ! TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type)); ! ! if (!vect_supportable_shift (code, interm_type)) ! return false; ! ! break; ! ! default: ! gcc_unreachable (); ! } ! ! /* There are four possible cases: ! 1. OPRND is defined by a type promotion (in that case FIRST is TRUE, it's ! the first statement in the sequence) ! a. The original, HALF_TYPE, is not enough - we replace the promotion ! from HALF_TYPE to TYPE with a promotion to INTERM_TYPE. ! b. HALF_TYPE is sufficient, OPRND is set as the RHS of the original ! promotion. ! 2. OPRND is defined by a pattern statement we created. ! a. Its type is not sufficient for the operation, we create a new stmt: ! a type conversion for OPRND from HALF_TYPE to INTERM_TYPE. We store ! this statement in NEW_DEF_STMT, and it is later put in ! STMT_VINFO_PATTERN_DEF_SEQ of the pattern statement for STMT. ! b. OPRND is good to use in the new statement. */ ! if (first) ! { ! if (interm_type) ! { ! /* Replace the original type conversion HALF_TYPE->TYPE with ! HALF_TYPE->INTERM_TYPE. */ ! if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt))) ! { ! new_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)); ! /* Check if the already created pattern stmt is what we need. */ ! if (!is_gimple_assign (new_stmt) ! || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (new_stmt)) ! || TREE_TYPE (gimple_assign_lhs (new_stmt)) != interm_type) ! return false; ! ! stmts->safe_push (def_stmt); ! oprnd = gimple_assign_lhs (new_stmt); ! } ! else ! { ! /* Create NEW_OPRND = (INTERM_TYPE) OPRND. */ ! oprnd = gimple_assign_rhs1 (def_stmt); ! new_oprnd = make_ssa_name (interm_type); ! new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd); ! STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)) = new_stmt; ! stmts->safe_push (def_stmt); ! oprnd = new_oprnd; ! } ! } ! else ! { ! /* Retrieve the operand before the type promotion. */ ! oprnd = gimple_assign_rhs1 (def_stmt); ! } ! } ! else ! { ! if (interm_type) ! { ! /* Create a type conversion HALF_TYPE->INTERM_TYPE. */ ! new_oprnd = make_ssa_name (interm_type); ! new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd); ! oprnd = new_oprnd; ! *new_def_stmt = new_stmt; ! } ! /* Otherwise, OPRND is already set. */ } ! if (interm_type) ! *new_type = interm_type; ! else ! *new_type = half_type; ! ! *op0 = oprnd; ! *op1 = fold_convert (*new_type, const_oprnd); ! return true; } ! /* Try to find a statement or a sequence of statements that can be performed ! on a smaller type: ! type x_t; ! TYPE x_T, res0_T, res1_T; ! loop: ! S1 x_t = *p; ! S2 x_T = (TYPE) x_t; ! S3 res0_T = op (x_T, C0); ! S4 res1_T = op (res0_T, C1); ! S5 ... = () res1_T; - type demotion ! ! where type 'TYPE' is at least double the size of type 'type', C0 and C1 are ! constants. ! Check if S3 and S4 can be done on a smaller type than 'TYPE', it can either ! be 'type' or some intermediate type. For now, we expect S5 to be a type ! demotion operation. We also check that S3 and S4 have only one use. */ ! static gimple * ! vect_recog_over_widening_pattern (vec<gimple *> *stmts, tree *type_out) ! { ! gimple *stmt = stmts->pop (); ! gimple *pattern_stmt = NULL, *new_def_stmt, *prev_stmt = NULL, ! *use_stmt = NULL; ! tree op0, op1, vectype = NULL_TREE, use_lhs, use_type; ! tree var = NULL_TREE, new_type = NULL_TREE, new_oprnd; ! bool first; ! tree type = NULL; ! ! first = true; ! while (1) ! { ! if (!vinfo_for_stmt (stmt) ! || STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt))) ! return NULL; ! ! new_def_stmt = NULL; ! if (!vect_operation_fits_smaller_type (stmt, var, &new_type, ! &op0, &op1, &new_def_stmt, ! stmts)) ! { ! if (first) ! return NULL; ! else ! break; ! } ! /* STMT can be performed on a smaller type. Check its uses. */ ! use_stmt = vect_single_imm_use (stmt); ! if (!use_stmt || !is_gimple_assign (use_stmt)) ! return NULL; ! ! /* Create pattern statement for STMT. */ ! vectype = get_vectype_for_scalar_type (new_type); ! if (!vectype) ! return NULL; ! ! /* We want to collect all the statements for which we create pattern ! statetments, except for the case when the last statement in the ! sequence doesn't have a corresponding pattern statement. In such ! case we associate the last pattern statement with the last statement ! in the sequence. Therefore, we only add the original statement to ! the list if we know that it is not the last. */ ! if (prev_stmt) ! stmts->safe_push (prev_stmt); ! var = vect_recog_temp_ssa_var (new_type, NULL); ! pattern_stmt ! = gimple_build_assign (var, gimple_assign_rhs_code (stmt), op0, op1); ! STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt)) = pattern_stmt; ! new_pattern_def_seq (vinfo_for_stmt (stmt), new_def_stmt); ! if (dump_enabled_p ()) ! { ! dump_printf_loc (MSG_NOTE, vect_location, ! "created pattern stmt: "); ! dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0); ! } ! type = gimple_expr_type (stmt); ! prev_stmt = stmt; ! stmt = use_stmt; ! ! first = false; ! } ! ! /* We got a sequence. We expect it to end with a type demotion operation. ! Otherwise, we quit (for now). There are three possible cases: the ! conversion is to NEW_TYPE (we don't do anything), the conversion is to ! a type bigger than NEW_TYPE and/or the signedness of USE_TYPE and ! NEW_TYPE differs (we create a new conversion statement). */ ! if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt))) ! { ! use_lhs = gimple_assign_lhs (use_stmt); ! use_type = TREE_TYPE (use_lhs); ! /* Support only type demotion or signedess change. */ ! if (!INTEGRAL_TYPE_P (use_type) ! || TYPE_PRECISION (type) <= TYPE_PRECISION (use_type)) ! return NULL; ! /* Check that NEW_TYPE is not bigger than the conversion result. */ ! if (TYPE_PRECISION (new_type) > TYPE_PRECISION (use_type)) ! return NULL; ! if (TYPE_UNSIGNED (new_type) != TYPE_UNSIGNED (use_type) ! || TYPE_PRECISION (new_type) != TYPE_PRECISION (use_type)) ! { ! *type_out = get_vectype_for_scalar_type (use_type); ! if (!*type_out) ! return NULL; ! /* Create NEW_TYPE->USE_TYPE conversion. */ ! new_oprnd = make_ssa_name (use_type); ! pattern_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, var); ! STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) = pattern_stmt; ! ! /* We created a pattern statement for the last statement in the ! sequence, so we don't need to associate it with the pattern ! statement created for PREV_STMT. Therefore, we add PREV_STMT ! to the list in order to mark it later in vect_pattern_recog_1. */ ! if (prev_stmt) ! stmts->safe_push (prev_stmt); ! } ! else ! { ! if (prev_stmt) ! STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (use_stmt)) ! = STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (prev_stmt)); ! *type_out = vectype; ! } ! stmts->safe_push (use_stmt); ! } ! else ! /* TODO: support general case, create a conversion to the correct type. */ return NULL; ! /* Pattern detected. */ ! vect_pattern_detected ("vect_recog_over_widening_pattern", stmts->last ()); return pattern_stmt; } --- 1315,1632 ---- return pattern_stmt; } + /* Recognize cases in which an operation is performed in one type WTYPE + but could be done more efficiently in a narrower type NTYPE. For example, + if we have: + + ATYPE a; // narrower than NTYPE + BTYPE b; // narrower than NTYPE + WTYPE aw = (WTYPE) a; + WTYPE bw = (WTYPE) b; + WTYPE res = aw + bw; // only uses of aw and bw + + then it would be more efficient to do: + + NTYPE an = (NTYPE) a; + NTYPE bn = (NTYPE) b; + NTYPE resn = an + bn; + WTYPE res = (WTYPE) resn; + + Other situations include things like: + + ATYPE a; // NTYPE or narrower + WTYPE aw = (WTYPE) a; + WTYPE res = aw + b; + + when only "(NTYPE) res" is significant. In that case it's more efficient + to truncate "b" and do the operation on NTYPE instead: + + NTYPE an = (NTYPE) a; + NTYPE bn = (NTYPE) b; // truncation + NTYPE resn = an + bn; + WTYPE res = (WTYPE) resn; + + All users of "res" should then use "resn" instead, making the final + statement dead (not marked as relevant). The final statement is still + needed to maintain the type correctness of the IR. + + vect_determine_precisions has already determined the minimum + precison of the operation and the minimum precision required + by users of the result. */ ! static gimple * ! vect_recog_over_widening_pattern (vec<gimple *> *stmts, tree *type_out) ! { ! gassign *last_stmt = dyn_cast <gassign *> (stmts->pop ()); ! if (!last_stmt) ! return NULL; ! /* See whether we have found that this operation can be done on a ! narrower type without changing its semantics. */ ! stmt_vec_info last_stmt_info = vinfo_for_stmt (last_stmt); ! unsigned int new_precision = last_stmt_info->operation_precision; ! if (!new_precision) ! return NULL; ! vec_info *vinfo = last_stmt_info->vinfo; ! tree lhs = gimple_assign_lhs (last_stmt); ! tree type = TREE_TYPE (lhs); ! tree_code code = gimple_assign_rhs_code (last_stmt); ! ! /* Keep the first operand of a COND_EXPR as-is: only the other two ! operands are interesting. */ ! unsigned int first_op = (code == COND_EXPR ? 2 : 1); ! ! /* Check the operands. */ ! unsigned int nops = gimple_num_ops (last_stmt) - first_op; ! auto_vec <vect_unpromoted_value, 3> unprom (nops); ! unprom.quick_grow (nops); ! unsigned int min_precision = 0; ! bool single_use_p = false; ! for (unsigned int i = 0; i < nops; ++i) ! { ! tree op = gimple_op (last_stmt, first_op + i); ! if (TREE_CODE (op) == INTEGER_CST) ! unprom[i].set_op (op, vect_constant_def); ! else if (TREE_CODE (op) == SSA_NAME) ! { ! bool op_single_use_p = true; ! if (!vect_look_through_possible_promotion (vinfo, op, &unprom[i], ! &op_single_use_p)) ! return NULL; ! /* If: ! (1) N bits of the result are needed; ! (2) all inputs are widened from M<N bits; and ! (3) one operand OP is a single-use SSA name ! ! we can shift the M->N widening from OP to the output ! without changing the number or type of extensions involved. ! This then reduces the number of copies of STMT_INFO. ! ! If instead of (3) more than one operand is a single-use SSA name, ! shifting the extension to the output is even more of a win. ! ! If instead: ! ! (1) N bits of the result are needed; ! (2) one operand OP2 is widened from M2<N bits; ! (3) another operand OP1 is widened from M1<M2 bits; and ! (4) both OP1 and OP2 are single-use ! ! the choice is between: ! ! (a) truncating OP2 to M1, doing the operation on M1, ! and then widening the result to N ! ! (b) widening OP1 to M2, doing the operation on M2, and then ! widening the result to N ! ! Both shift the M2->N widening of the inputs to the output. ! (a) additionally shifts the M1->M2 widening to the output; ! it requires fewer copies of STMT_INFO but requires an extra ! M2->M1 truncation. ! ! Which is better will depend on the complexity and cost of ! STMT_INFO, which is hard to predict at this stage. However, ! a clear tie-breaker in favor of (b) is the fact that the ! truncation in (a) increases the length of the operation chain. ! ! If instead of (4) only one of OP1 or OP2 is single-use, ! (b) is still a win over doing the operation in N bits: ! it still shifts the M2->N widening on the single-use operand ! to the output and reduces the number of STMT_INFO copies. ! ! If neither operand is single-use then operating on fewer than ! N bits might lead to more extensions overall. Whether it does ! or not depends on global information about the vectorization ! region, and whether that's a good trade-off would again ! depend on the complexity and cost of the statements involved, ! as well as things like register pressure that are not normally ! modelled at this stage. We therefore ignore these cases ! and just optimize the clear single-use wins above. ! ! Thus we take the maximum precision of the unpromoted operands ! and record whether any operand is single-use. */ ! if (unprom[i].dt == vect_internal_def) ! { ! min_precision = MAX (min_precision, ! TYPE_PRECISION (unprom[i].type)); ! single_use_p |= op_single_use_p; ! } ! } ! } ! /* Although the operation could be done in operation_precision, we have ! to balance that against introducing extra truncations or extensions. ! Calculate the minimum precision that can be handled efficiently. ! ! The loop above determined that the operation could be handled ! efficiently in MIN_PRECISION if SINGLE_USE_P; this would shift an ! extension from the inputs to the output without introducing more ! instructions, and would reduce the number of instructions required ! for STMT_INFO itself. ! ! vect_determine_precisions has also determined that the result only ! needs min_output_precision bits. Truncating by a factor of N times ! requires a tree of N - 1 instructions, so if TYPE is N times wider ! than min_output_precision, doing the operation in TYPE and truncating ! the result requires N + (N - 1) = 2N - 1 instructions per output vector. ! In contrast: ! ! - truncating the input to a unary operation and doing the operation ! in the new type requires at most N - 1 + 1 = N instructions per ! output vector ! ! - doing the same for a binary operation requires at most ! (N - 1) * 2 + 1 = 2N - 1 instructions per output vector ! ! Both unary and binary operations require fewer instructions than ! this if the operands were extended from a suitable truncated form. ! Thus there is usually nothing to lose by doing operations in ! min_output_precision bits, but there can be something to gain. */ ! if (!single_use_p) ! min_precision = last_stmt_info->min_output_precision; ! else ! min_precision = MIN (min_precision, last_stmt_info->min_output_precision); ! /* Apply the minimum efficient precision we just calculated. */ ! if (new_precision < min_precision) ! new_precision = min_precision; ! if (new_precision >= TYPE_PRECISION (type)) ! return NULL; ! vect_pattern_detected ("vect_recog_over_widening_pattern", last_stmt); ! *type_out = get_vectype_for_scalar_type (type); ! if (!*type_out) ! return NULL; ! /* We've found a viable pattern. Get the new type of the operation. */ ! bool unsigned_p = (last_stmt_info->operation_sign == UNSIGNED); ! tree new_type = build_nonstandard_integer_type (new_precision, unsigned_p); ! ! /* We specifically don't check here whether the target supports the ! new operation, since it might be something that a later pattern ! wants to rewrite anyway. If targets have a minimum element size ! for some optabs, we should pattern-match smaller ops to larger ops ! where beneficial. */ ! tree new_vectype = get_vectype_for_scalar_type (new_type); ! if (!new_vectype) ! return NULL; ! if (dump_enabled_p ()) { ! dump_printf_loc (MSG_NOTE, vect_location, "demoting "); ! dump_generic_expr (MSG_NOTE, TDF_SLIM, type); ! dump_printf (MSG_NOTE, " to "); ! dump_generic_expr (MSG_NOTE, TDF_SLIM, new_type); ! dump_printf (MSG_NOTE, "\n"); } ! /* Calculate the rhs operands for an operation on NEW_TYPE. */ ! STMT_VINFO_PATTERN_DEF_SEQ (last_stmt_info) = NULL; ! tree ops[3] = {}; ! for (unsigned int i = 1; i < first_op; ++i) ! ops[i - 1] = gimple_op (last_stmt, i); ! vect_convert_inputs (last_stmt_info, nops, &ops[first_op - 1], ! new_type, &unprom[0], new_vectype); ! ! /* Use the operation to produce a result of type NEW_TYPE. */ ! tree new_var = vect_recog_temp_ssa_var (new_type, NULL); ! gimple *pattern_stmt = gimple_build_assign (new_var, code, ! ops[0], ops[1], ops[2]); ! gimple_set_location (pattern_stmt, gimple_location (last_stmt)); ! if (dump_enabled_p ()) ! { ! dump_printf_loc (MSG_NOTE, vect_location, ! "created pattern stmt: "); ! dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0); } ! pattern_stmt = vect_convert_output (last_stmt_info, type, ! pattern_stmt, new_vectype); ! stmts->safe_push (last_stmt); ! return pattern_stmt; } + /* Recognize cases in which the input to a cast is wider than its + output, and the input is fed by a widening operation. Fold this + by removing the unnecessary intermediate widening. E.g.: ! unsigned char a; ! unsigned int b = (unsigned int) a; ! unsigned short c = (unsigned short) b; ! --> ! unsigned short c = (unsigned short) a; ! Although this is rare in input IR, it is an expected side-effect ! of the over-widening pattern above. ! This is beneficial also for integer-to-float conversions, if the ! widened integer has more bits than the float, and if the unwidened ! input doesn't. */ ! static gimple * ! vect_recog_cast_forwprop_pattern (vec<gimple *> *stmts, tree *type_out) ! { ! /* Check for a cast, including an integer-to-float conversion. */ ! gassign *last_stmt = dyn_cast <gassign *> (stmts->pop ()); ! if (!last_stmt) ! return NULL; ! tree_code code = gimple_assign_rhs_code (last_stmt); ! if (!CONVERT_EXPR_CODE_P (code) && code != FLOAT_EXPR) ! return NULL; ! /* Make sure that the rhs is a scalar with a natural bitsize. */ ! tree lhs = gimple_assign_lhs (last_stmt); ! if (!lhs) ! return NULL; ! tree lhs_type = TREE_TYPE (lhs); ! scalar_mode lhs_mode; ! if (VECT_SCALAR_BOOLEAN_TYPE_P (lhs_type) ! || !is_a <scalar_mode> (TYPE_MODE (lhs_type), &lhs_mode)) ! return NULL; ! /* Check for a narrowing operation (from a vector point of view). */ ! tree rhs = gimple_assign_rhs1 (last_stmt); ! tree rhs_type = TREE_TYPE (rhs); ! if (!INTEGRAL_TYPE_P (rhs_type) ! || VECT_SCALAR_BOOLEAN_TYPE_P (rhs_type) ! || TYPE_PRECISION (rhs_type) <= GET_MODE_BITSIZE (lhs_mode)) ! return NULL; ! /* Try to find an unpromoted input. */ ! stmt_vec_info last_stmt_info = vinfo_for_stmt (last_stmt); ! vec_info *vinfo = last_stmt_info->vinfo; ! vect_unpromoted_value unprom; ! if (!vect_look_through_possible_promotion (vinfo, rhs, &unprom) ! || TYPE_PRECISION (unprom.type) >= TYPE_PRECISION (rhs_type)) ! return NULL; ! /* If the bits above RHS_TYPE matter, make sure that they're the ! same when extending from UNPROM as they are when extending from RHS. */ ! if (!INTEGRAL_TYPE_P (lhs_type) ! && TYPE_SIGN (rhs_type) != TYPE_SIGN (unprom.type)) ! return NULL; ! /* We can get the same result by casting UNPROM directly, to avoid ! the unnecessary widening and narrowing. */ ! vect_pattern_detected ("vect_recog_cast_forwprop_pattern", last_stmt); ! *type_out = get_vectype_for_scalar_type (lhs_type); ! if (!*type_out) return NULL; ! tree new_var = vect_recog_temp_ssa_var (lhs_type, NULL); ! gimple *pattern_stmt = gimple_build_assign (new_var, NOP_EXPR, unprom.op); ! gimple_set_location (pattern_stmt, gimple_location (last_stmt)); + stmts->safe_push (last_stmt); return pattern_stmt; } *************** vect_recog_gather_scatter_pattern (vec<g *** 4145,4150 **** --- 4108,4498 ---- return pattern_stmt; } + /* Return true if TYPE is a non-boolean integer type. These are the types + that we want to consider for narrowing. */ + + static bool + vect_narrowable_type_p (tree type) + { + return INTEGRAL_TYPE_P (type) && !VECT_SCALAR_BOOLEAN_TYPE_P (type); + } + + /* Return true if the operation given by CODE can be truncated to N bits + when only N bits of the output are needed. This is only true if bit N+1 + of the inputs has no effect on the low N bits of the result. */ + + static bool + vect_truncatable_operation_p (tree_code code) + { + switch (code) + { + case PLUS_EXPR: + case MINUS_EXPR: + case MULT_EXPR: + case BIT_AND_EXPR: + case BIT_IOR_EXPR: + case BIT_XOR_EXPR: + case COND_EXPR: + return true; + + default: + return false; + } + } + + /* Record that STMT_INFO could be changed from operating on TYPE to + operating on a type with the precision and sign given by PRECISION + and SIGN respectively. PRECISION is an arbitrary bit precision; + it might not be a whole number of bytes. */ + + static void + vect_set_operation_type (stmt_vec_info stmt_info, tree type, + unsigned int precision, signop sign) + { + /* Round the precision up to a whole number of bytes. */ + precision = 1 << ceil_log2 (precision); + precision = MAX (precision, BITS_PER_UNIT); + if (precision < TYPE_PRECISION (type) + && (!stmt_info->operation_precision + || stmt_info->operation_precision > precision)) + { + stmt_info->operation_precision = precision; + stmt_info->operation_sign = sign; + } + } + + /* Record that STMT_INFO only requires MIN_INPUT_PRECISION from its + non-boolean inputs, all of which have type TYPE. MIN_INPUT_PRECISION + is an arbitrary bit precision; it might not be a whole number of bytes. */ + + static void + vect_set_min_input_precision (stmt_vec_info stmt_info, tree type, + unsigned int min_input_precision) + { + /* This operation in isolation only requires the inputs to have + MIN_INPUT_PRECISION of precision, However, that doesn't mean + that MIN_INPUT_PRECISION is a natural precision for the chain + as a whole. E.g. consider something like: + + unsigned short *x, *y; + *y = ((*x & 0xf0) >> 4) | (*y << 4); + + The right shift can be done on unsigned chars, and only requires the + result of "*x & 0xf0" to be done on unsigned chars. But taking that + approach would mean turning a natural chain of single-vector unsigned + short operations into one that truncates "*x" and then extends + "(*x & 0xf0) >> 4", with two vectors for each unsigned short + operation and one vector for each unsigned char operation. + This would be a significant pessimization. + + Instead only propagate the maximum of this precision and the precision + required by the users of the result. This means that we don't pessimize + the case above but continue to optimize things like: + + unsigned char *y; + unsigned short *x; + *y = ((*x & 0xf0) >> 4) | (*y << 4); + + Here we would truncate two vectors of *x to a single vector of + unsigned chars and use single-vector unsigned char operations for + everything else, rather than doing two unsigned short copies of + "(*x & 0xf0) >> 4" and then truncating the result. */ + min_input_precision = MAX (min_input_precision, + stmt_info->min_output_precision); + + if (min_input_precision < TYPE_PRECISION (type) + && (!stmt_info->min_input_precision + || stmt_info->min_input_precision > min_input_precision)) + stmt_info->min_input_precision = min_input_precision; + } + + /* Subroutine of vect_determine_min_output_precision. Return true if + we can calculate a reduced number of output bits for STMT_INFO, + whose result is LHS. */ + + static bool + vect_determine_min_output_precision_1 (stmt_vec_info stmt_info, tree lhs) + { + /* Take the maximum precision required by users of the result. */ + unsigned int precision = 0; + imm_use_iterator iter; + use_operand_p use; + FOR_EACH_IMM_USE_FAST (use, iter, lhs) + { + gimple *use_stmt = USE_STMT (use); + if (is_gimple_debug (use_stmt)) + continue; + if (!vect_stmt_in_region_p (stmt_info->vinfo, use_stmt)) + return false; + stmt_vec_info use_stmt_info = vinfo_for_stmt (use_stmt); + if (!use_stmt_info->min_input_precision) + return false; + precision = MAX (precision, use_stmt_info->min_input_precision); + } + + if (dump_enabled_p ()) + { + dump_printf_loc (MSG_NOTE, vect_location, "only the low %d bits of ", + precision); + dump_generic_expr (MSG_NOTE, TDF_SLIM, lhs); + dump_printf (MSG_NOTE, " are significant\n"); + } + stmt_info->min_output_precision = precision; + return true; + } + + /* Calculate min_output_precision for STMT_INFO. */ + + static void + vect_determine_min_output_precision (stmt_vec_info stmt_info) + { + /* We're only interested in statements with a narrowable result. */ + tree lhs = gimple_get_lhs (stmt_info->stmt); + if (!lhs + || TREE_CODE (lhs) != SSA_NAME + || !vect_narrowable_type_p (TREE_TYPE (lhs))) + return; + + if (!vect_determine_min_output_precision_1 (stmt_info, lhs)) + stmt_info->min_output_precision = TYPE_PRECISION (TREE_TYPE (lhs)); + } + + /* Use range information to decide whether STMT (described by STMT_INFO) + could be done in a narrower type. This is effectively a forward + propagation, since it uses context-independent information that applies + to all users of an SSA name. */ + + static void + vect_determine_precisions_from_range (stmt_vec_info stmt_info, gassign *stmt) + { + tree lhs = gimple_assign_lhs (stmt); + if (!lhs || TREE_CODE (lhs) != SSA_NAME) + return; + + tree type = TREE_TYPE (lhs); + if (!vect_narrowable_type_p (type)) + return; + + /* First see whether we have any useful range information for the result. */ + unsigned int precision = TYPE_PRECISION (type); + signop sign = TYPE_SIGN (type); + wide_int min_value, max_value; + if (!vect_get_range_info (lhs, &min_value, &max_value)) + return; + + tree_code code = gimple_assign_rhs_code (stmt); + unsigned int nops = gimple_num_ops (stmt); + + if (!vect_truncatable_operation_p (code)) + /* Check that all relevant input operands are compatible, and update + [MIN_VALUE, MAX_VALUE] to include their ranges. */ + for (unsigned int i = 1; i < nops; ++i) + { + tree op = gimple_op (stmt, i); + if (TREE_CODE (op) == INTEGER_CST) + { + /* Don't require the integer to have RHS_TYPE (which it might + not for things like shift amounts, etc.), but do require it + to fit the type. */ + if (!int_fits_type_p (op, type)) + return; + + min_value = wi::min (min_value, wi::to_wide (op, precision), sign); + max_value = wi::max (max_value, wi::to_wide (op, precision), sign); + } + else if (TREE_CODE (op) == SSA_NAME) + { + /* Ignore codes that don't take uniform arguments. */ + if (!types_compatible_p (TREE_TYPE (op), type)) + return; + + wide_int op_min_value, op_max_value; + if (!vect_get_range_info (op, &op_min_value, &op_max_value)) + return; + + min_value = wi::min (min_value, op_min_value, sign); + max_value = wi::max (max_value, op_max_value, sign); + } + else + return; + } + + /* Try to switch signed types for unsigned types if we can. + This is better for two reasons. First, unsigned ops tend + to be cheaper than signed ops. Second, it means that we can + handle things like: + + signed char c; + int res = (int) c & 0xff00; // range [0x0000, 0xff00] + + as: + + signed char c; + unsigned short res_1 = (unsigned short) c & 0xff00; + int res = (int) res_1; + + where the intermediate result res_1 has unsigned rather than + signed type. */ + if (sign == SIGNED && !wi::neg_p (min_value)) + sign = UNSIGNED; + + /* See what precision is required for MIN_VALUE and MAX_VALUE. */ + unsigned int precision1 = wi::min_precision (min_value, sign); + unsigned int precision2 = wi::min_precision (max_value, sign); + unsigned int value_precision = MAX (precision1, precision2); + if (value_precision >= precision) + return; + + if (dump_enabled_p ()) + { + dump_printf_loc (MSG_NOTE, vect_location, "can narrow to %s:%d" + " without loss of precision: ", + sign == SIGNED ? "signed" : "unsigned", + value_precision); + dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0); + } + + vect_set_operation_type (stmt_info, type, value_precision, sign); + vect_set_min_input_precision (stmt_info, type, value_precision); + } + + /* Use information about the users of STMT's result to decide whether + STMT (described by STMT_INFO) could be done in a narrower type. + This is effectively a backward propagation. */ + + static void + vect_determine_precisions_from_users (stmt_vec_info stmt_info, gassign *stmt) + { + tree_code code = gimple_assign_rhs_code (stmt); + unsigned int opno = (code == COND_EXPR ? 2 : 1); + tree type = TREE_TYPE (gimple_op (stmt, opno)); + if (!vect_narrowable_type_p (type)) + return; + + unsigned int precision = TYPE_PRECISION (type); + unsigned int operation_precision, min_input_precision; + switch (code) + { + CASE_CONVERT: + /* Only the bits that contribute to the output matter. Don't change + the precision of the operation itself. */ + operation_precision = precision; + min_input_precision = stmt_info->min_output_precision; + break; + + case LSHIFT_EXPR: + case RSHIFT_EXPR: + { + tree shift = gimple_assign_rhs2 (stmt); + if (TREE_CODE (shift) != INTEGER_CST + || !wi::ltu_p (wi::to_widest (shift), precision)) + return; + unsigned int const_shift = TREE_INT_CST_LOW (shift); + if (code == LSHIFT_EXPR) + { + /* We need CONST_SHIFT fewer bits of the input. */ + operation_precision = stmt_info->min_output_precision; + min_input_precision = (MAX (operation_precision, const_shift) + - const_shift); + } + else + { + /* We need CONST_SHIFT extra bits to do the operation. */ + operation_precision = (stmt_info->min_output_precision + + const_shift); + min_input_precision = operation_precision; + } + break; + } + + default: + if (vect_truncatable_operation_p (code)) + { + /* Input bit N has no effect on output bits N-1 and lower. */ + operation_precision = stmt_info->min_output_precision; + min_input_precision = operation_precision; + break; + } + return; + } + + if (operation_precision < precision) + { + if (dump_enabled_p ()) + { + dump_printf_loc (MSG_NOTE, vect_location, "can narrow to %s:%d" + " without affecting users: ", + TYPE_UNSIGNED (type) ? "unsigned" : "signed", + operation_precision); + dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0); + } + vect_set_operation_type (stmt_info, type, operation_precision, + TYPE_SIGN (type)); + } + vect_set_min_input_precision (stmt_info, type, min_input_precision); + } + + /* Handle vect_determine_precisions for STMT_INFO, given that we + have already done so for the users of its result. */ + + void + vect_determine_stmt_precisions (stmt_vec_info stmt_info) + { + vect_determine_min_output_precision (stmt_info); + if (gassign *stmt = dyn_cast <gassign *> (stmt_info->stmt)) + { + vect_determine_precisions_from_range (stmt_info, stmt); + vect_determine_precisions_from_users (stmt_info, stmt); + } + } + + /* Walk backwards through the vectorizable region to determine the + values of these fields: + + - min_output_precision + - min_input_precision + - operation_precision + - operation_sign. */ + + void + vect_determine_precisions (vec_info *vinfo) + { + DUMP_VECT_SCOPE ("vect_determine_precisions"); + + if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo)) + { + struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); + basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo); + unsigned int nbbs = loop->num_nodes; + + for (unsigned int i = 0; i < nbbs; i++) + { + basic_block bb = bbs[nbbs - i - 1]; + for (gimple_stmt_iterator si = gsi_last_bb (bb); + !gsi_end_p (si); gsi_prev (&si)) + vect_determine_stmt_precisions (vinfo_for_stmt (gsi_stmt (si))); + } + } + else + { + bb_vec_info bb_vinfo = as_a <bb_vec_info> (vinfo); + gimple_stmt_iterator si = bb_vinfo->region_end; + gimple *stmt; + do + { + if (!gsi_stmt (si)) + si = gsi_last_bb (bb_vinfo->bb); + else + gsi_prev (&si); + stmt = gsi_stmt (si); + stmt_vec_info stmt_info = vinfo_for_stmt (stmt); + if (stmt_info && STMT_VINFO_VECTORIZABLE (stmt_info)) + vect_determine_stmt_precisions (stmt_info); + } + while (stmt != gsi_stmt (bb_vinfo->region_begin)); + } + } + typedef gimple *(*vect_recog_func_ptr) (vec<gimple *> *, tree *); struct vect_recog_func *************** struct vect_recog_func *** 4157,4169 **** taken which means usually the more complex one needs to preceed the less comples onex (widen_sum only after dot_prod or sad for example). */ static vect_recog_func vect_vect_recog_func_ptrs[] = { { vect_recog_widen_mult_pattern, "widen_mult" }, { vect_recog_dot_prod_pattern, "dot_prod" }, { vect_recog_sad_pattern, "sad" }, { vect_recog_widen_sum_pattern, "widen_sum" }, { vect_recog_pow_pattern, "pow" }, { vect_recog_widen_shift_pattern, "widen_shift" }, - { vect_recog_over_widening_pattern, "over_widening" }, { vect_recog_rotate_pattern, "rotate" }, { vect_recog_vector_vector_shift_pattern, "vector_vector_shift" }, { vect_recog_divmod_pattern, "divmod" }, --- 4505,4518 ---- taken which means usually the more complex one needs to preceed the less comples onex (widen_sum only after dot_prod or sad for example). */ static vect_recog_func vect_vect_recog_func_ptrs[] = { + { vect_recog_over_widening_pattern, "over_widening" }, + { vect_recog_cast_forwprop_pattern, "cast_forwprop" }, { vect_recog_widen_mult_pattern, "widen_mult" }, { vect_recog_dot_prod_pattern, "dot_prod" }, { vect_recog_sad_pattern, "sad" }, { vect_recog_widen_sum_pattern, "widen_sum" }, { vect_recog_pow_pattern, "pow" }, { vect_recog_widen_shift_pattern, "widen_shift" }, { vect_recog_rotate_pattern, "rotate" }, { vect_recog_vector_vector_shift_pattern, "vector_vector_shift" }, { vect_recog_divmod_pattern, "divmod" }, *************** vect_pattern_recog (vec_info *vinfo) *** 4437,4442 **** --- 4786,4793 ---- unsigned int i, j; auto_vec<gimple *, 1> stmts_to_replace; + vect_determine_precisions (vinfo); + DUMP_VECT_SCOPE ("vect_pattern_recog"); if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo)) Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-1.c =================================================================== *** gcc/testsuite/gcc.dg/vect/vect-over-widen-1.c 2018-06-20 11:36:19.000000000 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-1.c 2018-06-20 11:36:20.135890693 +0100 *************** int main (void) *** 62,69 **** } /* { dg-final { scan-tree-dump-times "vect_recog_widen_shift_pattern: detected" 2 "vect" { target vect_widen_shift } } } */ ! /* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 2 "vect" { target vect_widen_shift } } } */ ! /* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 4 "vect" { target { { ! vect_sizes_32B_16B } && { ! vect_widen_shift } } } } } */ ! /* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 8 "vect" { target vect_sizes_32B_16B } } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ --- 62,70 ---- } /* { dg-final { scan-tree-dump-times "vect_recog_widen_shift_pattern: detected" 2 "vect" { target vect_widen_shift } } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 8} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 5} "vect" } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-1-big-array.c =================================================================== *** gcc/testsuite/gcc.dg/vect/vect-over-widen-1-big-array.c 2018-06-20 11:36:19.000000000 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-1-big-array.c 2018-06-20 11:36:20.135890693 +0100 *************** int main (void) *** 58,64 **** } /* { dg-final { scan-tree-dump-times "vect_recog_widen_shift_pattern: detected" 2 "vect" { target vect_widen_shift } } } */ ! /* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 2 "vect" { target vect_widen_shift } } } */ ! /* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 4 "vect" { target { ! vect_widen_shift } } } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ --- 58,66 ---- } /* { dg-final { scan-tree-dump-times "vect_recog_widen_shift_pattern: detected" 2 "vect" { target vect_widen_shift } } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 8} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 5} "vect" } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-2.c =================================================================== *** gcc/testsuite/gcc.dg/vect/vect-over-widen-2.c 2018-06-20 11:36:19.000000000 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-2.c 2018-06-20 11:36:20.135890693 +0100 *************** int main (void) *** 57,63 **** return 0; } ! /* Final value stays in int, so no over-widening is detected at the moment. */ ! /* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 0 "vect" } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ --- 57,68 ---- return 0; } ! /* This is an over-widening even though the final result is still an int. ! It's better to do one vector of ops on chars and then widen than to ! widen and then do 4 vectors of ops on ints. */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 8} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 5} "vect" } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-2-big-array.c =================================================================== *** gcc/testsuite/gcc.dg/vect/vect-over-widen-2-big-array.c 2018-06-20 11:36:19.000000000 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-2-big-array.c 2018-06-20 11:36:20.135890693 +0100 *************** int main (void) *** 57,63 **** return 0; } ! /* Final value stays in int, so no over-widening is detected at the moment. */ ! /* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 0 "vect" } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ --- 57,68 ---- return 0; } ! /* This is an over-widening even though the final result is still an int. ! It's better to do one vector of ops on chars and then widen than to ! widen and then do 4 vectors of ops on ints. */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 8} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 5} "vect" } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-3.c =================================================================== *** gcc/testsuite/gcc.dg/vect/vect-over-widen-3.c 2018-06-20 11:36:19.000000000 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-3.c 2018-06-20 11:36:20.135890693 +0100 *************** int main (void) *** 57,62 **** return 0; } ! /* { dg-final { scan-tree-dump "vect_recog_over_widening_pattern: detected" "vect" } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ --- 57,65 ---- return 0; } ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 8} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 9} "vect" } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-3-big-array.c =================================================================== *** gcc/testsuite/gcc.dg/vect/vect-over-widen-3-big-array.c 2018-06-20 11:36:19.000000000 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-3-big-array.c 2018-06-20 11:36:20.135890693 +0100 *************** int main (void) *** 59,65 **** return 0; } ! /* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 2 "vect" { target { ! vect_widen_shift } } } } */ ! /* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 1 "vect" { target vect_widen_shift } } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ --- 59,67 ---- return 0; } ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 8} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 9} "vect" } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-4.c =================================================================== *** gcc/testsuite/gcc.dg/vect/vect-over-widen-4.c 2018-06-20 11:36:19.000000000 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-4.c 2018-06-20 11:36:20.135890693 +0100 *************** int main (void) *** 66,73 **** } /* { dg-final { scan-tree-dump-times "vect_recog_widen_shift_pattern: detected" 2 "vect" { target vect_widen_shift } } } */ ! /* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 2 "vect" { target vect_widen_shift } } } */ ! /* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 4 "vect" { target { { ! vect_sizes_32B_16B } && { ! vect_widen_shift } } } } } */ ! /* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 8 "vect" { target vect_sizes_32B_16B } } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ --- 66,74 ---- } /* { dg-final { scan-tree-dump-times "vect_recog_widen_shift_pattern: detected" 2 "vect" { target vect_widen_shift } } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 8} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 5} "vect" } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-4-big-array.c =================================================================== *** gcc/testsuite/gcc.dg/vect/vect-over-widen-4-big-array.c 2018-06-20 11:36:19.000000000 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-4-big-array.c 2018-06-20 11:36:20.135890693 +0100 *************** int main (void) *** 62,68 **** } /* { dg-final { scan-tree-dump-times "vect_recog_widen_shift_pattern: detected" 2 "vect" { target vect_widen_shift } } } */ ! /* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 2 "vect" { target vect_widen_shift } } } */ ! /* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 4 "vect" { target { ! vect_widen_shift } } } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ --- 62,70 ---- } /* { dg-final { scan-tree-dump-times "vect_recog_widen_shift_pattern: detected" 2 "vect" { target vect_widen_shift } } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 8} "vect" } } */ ! /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 5} "vect" } } */ /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/bb-slp-over-widen-1.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/bb-slp-over-widen-1.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,66 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #include "tree-vect.h" + + /* Deliberate use of signed >>. */ + #define DEF_LOOP(SIGNEDNESS) \ + void __attribute__ ((noipa)) \ + f_##SIGNEDNESS (SIGNEDNESS char *restrict a, \ + SIGNEDNESS char *restrict b, \ + SIGNEDNESS char *restrict c) \ + { \ + a[0] = (b[0] + c[0]) >> 1; \ + a[1] = (b[1] + c[1]) >> 1; \ + a[2] = (b[2] + c[2]) >> 1; \ + a[3] = (b[3] + c[3]) >> 1; \ + a[4] = (b[4] + c[4]) >> 1; \ + a[5] = (b[5] + c[5]) >> 1; \ + a[6] = (b[6] + c[6]) >> 1; \ + a[7] = (b[7] + c[7]) >> 1; \ + a[8] = (b[8] + c[8]) >> 1; \ + a[9] = (b[9] + c[9]) >> 1; \ + a[10] = (b[10] + c[10]) >> 1; \ + a[11] = (b[11] + c[11]) >> 1; \ + a[12] = (b[12] + c[12]) >> 1; \ + a[13] = (b[13] + c[13]) >> 1; \ + a[14] = (b[14] + c[14]) >> 1; \ + a[15] = (b[15] + c[15]) >> 1; \ + } + + DEF_LOOP (signed) + DEF_LOOP (unsigned) + + #define N 16 + + #define TEST_LOOP(SIGNEDNESS, BASE_B, BASE_C) \ + { \ + SIGNEDNESS char a[N], b[N], c[N]; \ + for (int i = 0; i < N; ++i) \ + { \ + b[i] = BASE_B + i * 15; \ + c[i] = BASE_C + i * 14; \ + asm volatile ("" ::: "memory"); \ + } \ + f_##SIGNEDNESS (a, b, c); \ + for (int i = 0; i < N; ++i) \ + if (a[i] != (BASE_B + BASE_C + i * 29) >> 1) \ + __builtin_abort (); \ + } + + int + main (void) + { + check_vect (); + + TEST_LOOP (signed, -128, -120); + TEST_LOOP (unsigned, 4, 10); + + return 0; + } + + /* { dg-final { scan-tree-dump "demoting int to signed short" "slp2" { target { ! vect_widen_shift } } } } */ + /* { dg-final { scan-tree-dump "demoting int to unsigned short" "slp2" { target { ! vect_widen_shift } } } } */ + /* { dg-final { scan-tree-dump-times "basic block vectorized" 2 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/bb-slp-over-widen-2.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/bb-slp-over-widen-2.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,65 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #include "tree-vect.h" + + /* Deliberate use of signed >>. */ + #define DEF_LOOP(SIGNEDNESS) \ + void __attribute__ ((noipa)) \ + f_##SIGNEDNESS (SIGNEDNESS char *restrict a, \ + SIGNEDNESS char *restrict b, \ + SIGNEDNESS char c) \ + { \ + a[0] = (b[0] + c) >> 1; \ + a[1] = (b[1] + c) >> 1; \ + a[2] = (b[2] + c) >> 1; \ + a[3] = (b[3] + c) >> 1; \ + a[4] = (b[4] + c) >> 1; \ + a[5] = (b[5] + c) >> 1; \ + a[6] = (b[6] + c) >> 1; \ + a[7] = (b[7] + c) >> 1; \ + a[8] = (b[8] + c) >> 1; \ + a[9] = (b[9] + c) >> 1; \ + a[10] = (b[10] + c) >> 1; \ + a[11] = (b[11] + c) >> 1; \ + a[12] = (b[12] + c) >> 1; \ + a[13] = (b[13] + c) >> 1; \ + a[14] = (b[14] + c) >> 1; \ + a[15] = (b[15] + c) >> 1; \ + } + + DEF_LOOP (signed) + DEF_LOOP (unsigned) + + #define N 16 + + #define TEST_LOOP(SIGNEDNESS, BASE_B, C) \ + { \ + SIGNEDNESS char a[N], b[N], c[N]; \ + for (int i = 0; i < N; ++i) \ + { \ + b[i] = BASE_B + i * 15; \ + asm volatile ("" ::: "memory"); \ + } \ + f_##SIGNEDNESS (a, b, C); \ + for (int i = 0; i < N; ++i) \ + if (a[i] != (BASE_B + C + i * 15) >> 1) \ + __builtin_abort (); \ + } + + int + main (void) + { + check_vect (); + + TEST_LOOP (signed, -128, -120); + TEST_LOOP (unsigned, 4, 250); + + return 0; + } + + /* { dg-final { scan-tree-dump "demoting int to signed short" "slp2" { target { ! vect_widen_shift } } } } */ + /* { dg-final { scan-tree-dump "demoting int to unsigned short" "slp2" { target { ! vect_widen_shift } } } } */ + /* { dg-final { scan-tree-dump-times "basic block vectorized" 2 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-5.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-5.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,51 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #include "tree-vect.h" + + #ifndef SIGNEDNESS + #define SIGNEDNESS signed + #define BASE_B -128 + #define BASE_C -100 + #endif + + #define N 50 + + /* Both range analysis and backward propagation from the truncation show + that these calculations can be done in SIGNEDNESS short. */ + void __attribute__ ((noipa)) + f (SIGNEDNESS char *restrict a, SIGNEDNESS char *restrict b, + SIGNEDNESS char *restrict c) + { + /* Deliberate use of signed >>. */ + for (int i = 0; i < N; ++i) + a[i] = (b[i] + c[i]) >> 1; + } + + int + main (void) + { + check_vect (); + + SIGNEDNESS char a[N], b[N], c[N]; + for (int i = 0; i < N; ++i) + { + b[i] = BASE_B + i * 5; + c[i] = BASE_C + i * 4; + asm volatile ("" ::: "memory"); + } + f (a, b, c); + for (int i = 0; i < N; ++i) + if (a[i] != (BASE_B + BASE_C + i * 9) >> 1) + __builtin_abort (); + + return 0; + } + + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* \+ } "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 1} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_cast_forwprop_pattern: detected:[^\n]* \(signed char\)} "vect" } } */ + /* { dg-final { scan-tree-dump-not {vector[^ ]* int} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-6.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-6.c 2018-06-20 11:36:20.139890658 +0100 *************** *** 0 **** --- 1,16 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #define SIGNEDNESS unsigned + #define BASE_B 4 + #define BASE_C 40 + + #include "vect-over-widen-5.c" + + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* \+ } "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 1} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_cast_forwprop_pattern: detected:[^\n]* \(unsigned char\)} "vect" } } */ + /* { dg-final { scan-tree-dump-not {vector[^ ]* int} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-7.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-7.c 2018-06-20 11:36:20.139890658 +0100 *************** *** 0 **** --- 1,53 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #include "tree-vect.h" + + #ifndef SIGNEDNESS + #define SIGNEDNESS signed + #define BASE_B -128 + #define BASE_C -100 + #define D -120 + #endif + + #define N 50 + + /* Both range analysis and backward propagation from the truncation show + that these calculations can be done in SIGNEDNESS short. */ + void __attribute__ ((noipa)) + f (SIGNEDNESS char *restrict a, SIGNEDNESS char *restrict b, + SIGNEDNESS char *restrict c, SIGNEDNESS char d) + { + int promoted_d = d; + for (int i = 0; i < N; ++i) + /* Deliberate use of signed >>. */ + a[i] = (b[i] + c[i] + promoted_d) >> 2; + } + + int + main (void) + { + check_vect (); + + SIGNEDNESS char a[N], b[N], c[N]; + for (int i = 0; i < N; ++i) + { + b[i] = BASE_B + i * 5; + c[i] = BASE_C + i * 4; + asm volatile ("" ::: "memory"); + } + f (a, b, c, D); + for (int i = 0; i < N; ++i) + if (a[i] != (BASE_B + BASE_C + D + i * 9) >> 2) + __builtin_abort (); + + return 0; + } + + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* \+ } "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 2} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_cast_forwprop_pattern: detected:[^\n]* \(signed char\)} "vect" } } */ + /* { dg-final { scan-tree-dump-not {vector[^ ]* int} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-8.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-8.c 2018-06-20 11:36:20.139890658 +0100 *************** *** 0 **** --- 1,19 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #ifndef SIGNEDNESS + #define SIGNEDNESS unsigned + #define BASE_B 4 + #define BASE_C 40 + #define D 251 + #endif + + #include "vect-over-widen-7.c" + + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* \+ } "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 2} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_cast_forwprop_pattern: detected:[^\n]* \(unsigned char\)} "vect" } } */ + /* { dg-final { scan-tree-dump-not {vector[^ ]* int} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-9.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-9.c 2018-06-20 11:36:20.139890658 +0100 *************** *** 0 **** --- 1,58 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #include "tree-vect.h" + + #ifndef SIGNEDNESS + #define SIGNEDNESS signed + #define BASE_B -128 + #define BASE_C -100 + #endif + + #define N 50 + + /* Both range analysis and backward propagation from the truncation show + that these calculations can be done in SIGNEDNESS short. */ + void __attribute__ ((noipa)) + f (SIGNEDNESS char *restrict a, SIGNEDNESS char *restrict b, + SIGNEDNESS char *restrict c) + { + for (int i = 0; i < N; ++i) + { + /* Deliberate use of signed >>. */ + int res = b[i] + c[i]; + a[i] = (res + (res >> 1)) >> 2; + } + } + + int + main (void) + { + check_vect (); + + SIGNEDNESS char a[N], b[N], c[N]; + for (int i = 0; i < N; ++i) + { + b[i] = BASE_B + i * 5; + c[i] = BASE_C + i * 4; + asm volatile ("" ::: "memory"); + } + f (a, b, c); + for (int i = 0; i < N; ++i) + { + int res = BASE_B + BASE_C + i * 9; + if (a[i] != ((res + (res >> 1)) >> 2)) + __builtin_abort (); + } + + return 0; + } + + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* \+ } "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 1} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 2} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_cast_forwprop_pattern: detected:[^\n]* \(signed char\)} "vect" } } */ + /* { dg-final { scan-tree-dump-not {vector[^ ]* int} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-10.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-10.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,19 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #ifndef SIGNEDNESS + #define SIGNEDNESS unsigned + #define BASE_B 4 + #define BASE_C 40 + #endif + + #include "vect-over-widen-9.c" + + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* \+ } "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 1} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 2} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_cast_forwprop_pattern: detected:[^\n]* \(unsigned char\)} "vect" } } */ + /* { dg-final { scan-tree-dump-not {vector[^ ]* int} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-11.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-11.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,63 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #include "tree-vect.h" + + #ifndef SIGNEDNESS + #define SIGNEDNESS signed + #define BASE_B -128 + #define BASE_C -100 + #endif + + #define N 50 + + /* Both range analysis and backward propagation from the truncation show + that these calculations can be done in SIGNEDNESS short, with "res" + being extended for the store to d[i]. */ + void __attribute__ ((noipa)) + f (SIGNEDNESS char *restrict a, SIGNEDNESS char *restrict b, + SIGNEDNESS char *restrict c, int *restrict d) + { + for (int i = 0; i < N; ++i) + { + /* Deliberate use of signed >>. */ + int res = b[i] + c[i]; + a[i] = (res + (res >> 1)) >> 2; + d[i] = res; + } + } + + int + main (void) + { + check_vect (); + + SIGNEDNESS char a[N], b[N], c[N]; + int d[N]; + for (int i = 0; i < N; ++i) + { + b[i] = BASE_B + i * 5; + c[i] = BASE_C + i * 4; + asm volatile ("" ::: "memory"); + } + f (a, b, c, d); + for (int i = 0; i < N; ++i) + { + int res = BASE_B + BASE_C + i * 9; + if (a[i] != ((res + (res >> 1)) >> 2)) + __builtin_abort (); + if (d[i] != res) + __builtin_abort (); + } + + return 0; + } + + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* \+ } "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 1} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 2} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_cast_forwprop_pattern: detected:[^\n]* \(signed char\)} "vect" } } */ + /* { dg-final { scan-tree-dump {vector[^ ]* int} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-12.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-12.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,19 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #ifndef SIGNEDNESS + #define SIGNEDNESS unsigned + #define BASE_B 4 + #define BASE_C 40 + #endif + + #include "vect-over-widen-11.c" + + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* \+ } "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 1} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 2} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_cast_forwprop_pattern: detected:[^\n]* \(unsigned char\)} "vect" } } */ + /* { dg-final { scan-tree-dump {vector[^ ]* int} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-13.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-13.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,50 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #include "tree-vect.h" + + #ifndef SIGNEDNESS + #define SIGNEDNESS signed + #define BASE_B -128 + #define BASE_C -120 + #endif + + #define N 50 + + /* We rely on range analysis to show that these calculations can be done + in SIGNEDNESS short. */ + void __attribute__ ((noipa)) + f (SIGNEDNESS char *restrict a, SIGNEDNESS char *restrict b, + SIGNEDNESS char *restrict c) + { + for (int i = 0; i < N; ++i) + a[i] = (b[i] + c[i]) / 2; + } + + int + main (void) + { + check_vect (); + + SIGNEDNESS char a[N], b[N], c[N]; + for (int i = 0; i < N; ++i) + { + b[i] = BASE_B + i * 5; + c[i] = BASE_C + i * 4; + asm volatile ("" ::: "memory"); + } + f (a, b, c); + for (int i = 0; i < N; ++i) + if (a[i] != (BASE_B + BASE_C + i * 9) / 2) + __builtin_abort (); + + return 0; + } + + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* \+} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* / 2} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_cast_forwprop_pattern: detected:[^\n]* = \(signed char\)} "vect" } } */ + /* { dg-final { scan-tree-dump-not {vector[^ ]* int} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-14.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-14.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,18 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #ifndef SIGNEDNESS + #define SIGNEDNESS unsigned + #define BASE_B 4 + #define BASE_C 40 + #endif + + #include "vect-over-widen-13.c" + + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* \+} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 1} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_cast_forwprop_pattern: detected:[^\n]* = \(unsigned char\)} "vect" } } */ + /* { dg-final { scan-tree-dump-not {vector[^ ]* int} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-15.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-15.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,52 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #include "tree-vect.h" + + #ifndef SIGNEDNESS + #define SIGNEDNESS signed + #define BASE_B -128 + #define BASE_C -120 + #endif + + #define N 50 + + /* We rely on range analysis to show that these calculations can be done + in SIGNEDNESS short, with the result being extended to int for the + store. */ + void __attribute__ ((noipa)) + f (int *restrict a, SIGNEDNESS char *restrict b, + SIGNEDNESS char *restrict c) + { + for (int i = 0; i < N; ++i) + a[i] = (b[i] + c[i]) / 2; + } + + int + main (void) + { + check_vect (); + + int a[N]; + SIGNEDNESS char b[N], c[N]; + for (int i = 0; i < N; ++i) + { + b[i] = BASE_B + i * 5; + c[i] = BASE_C + i * 4; + asm volatile ("" ::: "memory"); + } + f (a, b, c); + for (int i = 0; i < N; ++i) + if (a[i] != (BASE_B + BASE_C + i * 9) / 2) + __builtin_abort (); + + return 0; + } + + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* \+} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* / 2} "vect" } } */ + /* { dg-final { scan-tree-dump-not {vect_recog_cast_forwprop_pattern: detected} "vect" } } */ + /* { dg-final { scan-tree-dump {vector[^ ]* int} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-16.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-16.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,18 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #ifndef SIGNEDNESS + #define SIGNEDNESS unsigned + #define BASE_B 4 + #define BASE_C 40 + #endif + + #include "vect-over-widen-15.c" + + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* \+} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 1} "vect" } } */ + /* { dg-final { scan-tree-dump-not {vect_recog_cast_forwprop_pattern: detected} "vect" } } */ + /* { dg-final { scan-tree-dump {vector[^ ]* int} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-17.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-17.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,46 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #include "tree-vect.h" + + #define N 1024 + + /* This should not be treated as an over-widening pattern, even though + "(b[i] & 0xef) | 0x80)" could be done in unsigned chars. */ + + void __attribute__ ((noipa)) + f (unsigned short *restrict a, unsigned short *restrict b) + { + for (__INTPTR_TYPE__ i = 0; i < N; ++i) + { + unsigned short foo = ((b[i] & 0xef) | 0x80) + (a[i] << 4); + a[i] = foo; + } + } + + int + main (void) + { + check_vect (); + + unsigned short a[N], b[N]; + for (int i = 0; i < N; ++i) + { + a[i] = i; + b[i] = i * 3; + asm volatile ("" ::: "memory"); + } + f (a, b); + for (int i = 0; i < N; ++i) + if (a[i] != ((((i * 3) & 0xef) | 0x80) + (i << 4))) + __builtin_abort (); + + return 0; + } + + /* { dg-final { scan-tree-dump-not {vect_recog_over_widening_pattern: detected} "vect" } } */ + /* { dg-final { scan-tree-dump-not {vector[^\n]*char} "vect" } } */ + /* { dg-final { scan-tree-dump-not {vector[^ ]* int} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-18.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-18.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,50 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #include "tree-vect.h" + + #define N 1024 + + /* This should be treated as an over-widening pattern: we can truncate + b to unsigned char after loading it and do all the computation in + unsigned char. */ + + void __attribute__ ((noipa)) + f (unsigned char *restrict a, unsigned short *restrict b) + { + for (__INTPTR_TYPE__ i = 0; i < N; ++i) + { + unsigned short foo = ((b[i] & 0xef) | 0x80) + (a[i] << 4); + a[i] = foo; + } + } + + int + main (void) + { + check_vect (); + + unsigned char a[N]; + unsigned short b[N]; + for (int i = 0; i < N; ++i) + { + a[i] = i; + b[i] = i * 3; + asm volatile ("" ::: "memory"); + } + f (a, b); + for (int i = 0; i < N; ++i) + if (a[i] != (unsigned char) ((((i * 3) & 0xef) | 0x80) + (i << 4))) + __builtin_abort (); + + return 0; + } + + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* &} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* |} "vect" } } */ + /* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* <<} "vect" } } */ + /* { dg-final { scan-tree-dump {vector[^\n]*char} "vect" } } */ + /* { dg-final { scan-tree-dump-not {vector[^ ]* int} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-19.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-19.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,53 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #include "tree-vect.h" + + #define N 111 + + /* This shouldn't be treated as an over-widening operation: it's better + to reuse the extensions of di and ei for di + ei than to add them + as shorts and introduce a third extension. */ + + void __attribute__ ((noipa)) + f (unsigned int *restrict a, unsigned int *restrict b, + unsigned int *restrict c, unsigned char *restrict d, + unsigned char *restrict e) + { + for (__INTPTR_TYPE__ i = 0; i < N; ++i) + { + unsigned int di = d[i]; + unsigned int ei = e[i]; + a[i] = di; + b[i] = ei; + c[i] = di + ei; + } + } + + int + main (void) + { + check_vect (); + + unsigned int a[N], b[N], c[N]; + unsigned char d[N], e[N]; + for (int i = 0; i < N; ++i) + { + d[i] = i * 2 + 3; + e[i] = i + 100; + asm volatile ("" ::: "memory"); + } + f (a, b, c, d, e); + for (int i = 0; i < N; ++i) + if (a[i] != i * 2 + 3 + || b[i] != i + 100 + || c[i] != i * 3 + 103) + __builtin_abort (); + + return 0; + } + + /* { dg-final { scan-tree-dump-not {vect_recog_over_widening_pattern: detected} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-20.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-20.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,53 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #include "tree-vect.h" + + #define N 111 + + /* This shouldn't be treated as an over-widening operation: it's better + to reuse the extensions of di and ei for di + ei than to add them + as shorts and introduce a third extension. */ + + void __attribute__ ((noipa)) + f (unsigned int *restrict a, unsigned int *restrict b, + unsigned int *restrict c, unsigned char *restrict d, + unsigned char *restrict e) + { + for (__INTPTR_TYPE__ i = 0; i < N; ++i) + { + int di = d[i]; + int ei = e[i]; + a[i] = di; + b[i] = ei; + c[i] = di + ei; + } + } + + int + main (void) + { + check_vect (); + + unsigned int a[N], b[N], c[N]; + unsigned char d[N], e[N]; + for (int i = 0; i < N; ++i) + { + d[i] = i * 2 + 3; + e[i] = i + 100; + asm volatile ("" ::: "memory"); + } + f (a, b, c, d, e); + for (int i = 0; i < N; ++i) + if (a[i] != i * 2 + 3 + || b[i] != i + 100 + || c[i] != i * 3 + 103) + __builtin_abort (); + + return 0; + } + + /* { dg-final { scan-tree-dump-not {vect_recog_over_widening_pattern: detected} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */ Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-21.c =================================================================== *** /dev/null 2018-06-13 14:36:57.192460992 +0100 --- gcc/testsuite/gcc.dg/vect/vect-over-widen-21.c 2018-06-20 11:36:20.135890693 +0100 *************** *** 0 **** --- 1,51 ---- + /* { dg-require-effective-target vect_int } */ + /* { dg-require-effective-target vect_shift } */ + /* { dg-require-effective-target vect_pack_trunc } */ + /* { dg-require-effective-target vect_unpack } */ + + #include "tree-vect.h" + + #define N 111 + + /* This shouldn't be treated as an over-widening operation: it's better + to reuse the extensions of di and ei for di + ei than to add them + as shorts and introduce a third extension. */ + + void __attribute__ ((noipa)) + f (unsigned int *restrict a, unsigned int *restrict b, + unsigned int *restrict c, unsigned char *restrict d, + unsigned char *restrict e) + { + for (__INTPTR_TYPE__ i = 0; i < N; ++i) + { + a[i] = d[i]; + b[i] = e[i]; + c[i] = d[i] + e[i]; + } + } + + int + main (void) + { + check_vect (); + + unsigned int a[N], b[N], c[N]; + unsigned char d[N], e[N]; + for (int i = 0; i < N; ++i) + { + d[i] = i * 2 + 3; + e[i] = i + 100; + asm volatile ("" ::: "memory"); + } + f (a, b, c, d, e); + for (int i = 0; i < N; ++i) + if (a[i] != i * 2 + 3 + || b[i] != i + 100 + || c[i] != i * 3 + 103) + __builtin_abort (); + + return 0; + } + + /* { dg-final { scan-tree-dump-not {vect_recog_over_widening_pattern: detected} "vect" } } */ + /* { dg-final { scan-tree-dump-times "vectorized 1 loop" 1 "vect" } } */