Hello world, after receiving no negative feedback on my RFC patch, I have deciced to submit the patch.
The attached patch handles MATMUL(TRANSPOSE(A),B) in inlining matmul. Speed is a bit faster than the library version. Regression-tested. OK for trunk? Regards Thomas 2017-05-17 Thomas Koenig <tkoe...@gcc.gnu.org> PR fortran/66094 * frontend-passes.c (matrix_case): Add A2TB2. (inline_limit_check): Handle MATMUL(TRANSPOSE(A),B) (inline_matmul_assign): Likewise. 2017-05-17 Thomas Koenig <tkoe...@gcc.gnu.org> PR fortran/66094 * gfortran.dg/inline_matmul_16.f90: New test.
! { dg-do run } ! { dg-options "-ffrontend-optimize -fdump-tree-optimized -Wrealloc-lhs -finline-matmul-limit=1000 -O" } ! PR 66094: Check functionality for MATMUL(TRANSPOSE(A),B)) for two-dimensional arrays program main implicit none integer, parameter :: n = 3, m=4, cnt=2 real, dimension(cnt,n) :: a real, dimension(cnt,m) :: b real, dimension(n,m) :: c, cres real, dimension(:,:), allocatable :: calloc integer :: in, im, icnt data a / 2., -3., 5., -7., 11., -13./ data b /17., -23., 29., -31., 37., -39., 41., -47./ data cres /103., 246., 486., 151., 362., 722., & 191., 458., 914., 223., 534., 1062./ c = matmul(transpose(a),b) if (sum(c-cres)>1e-4) call abort if (sum(c-cres)>1e-4) call abort ! Unallocated calloc = matmul(transpose(a),b) ! { dg-warning "Code for reallocating the allocatable array" } if (any(shape(c) /= shape(calloc))) call abort if (sum(calloc-cres)>1e-4) call abort deallocate(calloc) ! Allocated to wrong shape allocate (calloc(10,10)) calloc = matmul(transpose(a),b) ! { dg-warning "Code for reallocating the allocatable array" } if (any(shape(c) /= shape(calloc))) call abort if (sum(calloc-cres)>1e-4) call abort deallocate(calloc) ! cycle through a few test cases... do in=2,10 do im = 2,10 do icnt = 2,10 block real, dimension(icnt,in) :: a2 real, dimension(icnt,im) :: b2 real, dimension(in,im) :: c2,cr integer :: i,j,k call random_number(a2) call random_number(b2) c2 = 0 do i=1,size(a2,2) do j=1, size(b2,2) do k=1, size(a2,1) c2(i,j) = c2(i,j) + a2(k,i) * b2(k,j) end do end do end do cr = matmul(transpose(a2), b2) if (any(abs(c2-cr) > 1e-4)) call abort end block end do end do end do end program main ! { dg-final { scan-tree-dump-times "_gfortran_matmul" 0 "optimized" } }
Index: frontend-passes.c =================================================================== --- frontend-passes.c (Revision 247809) +++ frontend-passes.c (Arbeitskopie) @@ -112,7 +112,7 @@ static int var_num = 1; /* What sort of matrix we are dealing with when inlining MATMUL. */ -enum matrix_case { none=0, A2B2, A2B1, A1B2, A2B2T }; +enum matrix_case { none=0, A2B2, A2B1, A1B2, A2B2T, A2TB2 }; /* Keep track of the number of expressions we have inserted so far using create_var. */ @@ -2252,7 +2252,7 @@ inline_limit_check (gfc_expr *a, gfc_expr *b, enum gfc_typespec ts; gfc_expr *cond; - gcc_assert (m_case == A2B2 || m_case == A2B2T); + gcc_assert (m_case == A2B2 || m_case == A2B2T || m_case == A2TB2); /* Calculation is done in real to avoid integer overflow. */ @@ -2425,6 +2425,20 @@ matmul_lhs_realloc (gfc_expr *c, gfc_expr *a, gfc_ cond = build_logical_expr (INTRINSIC_OR, ne1, ne2); break; + case A2TB2: + + ar->start[0] = get_array_inq_function (GFC_ISYM_SIZE, a, 2); + ar->start[1] = get_array_inq_function (GFC_ISYM_SIZE, b, 2); + + ne1 = build_logical_expr (INTRINSIC_NE, + get_array_inq_function (GFC_ISYM_SIZE, c, 1), + get_array_inq_function (GFC_ISYM_SIZE, a, 2)); + ne2 = build_logical_expr (INTRINSIC_NE, + get_array_inq_function (GFC_ISYM_SIZE, c, 2), + get_array_inq_function (GFC_ISYM_SIZE, b, 2)); + cond = build_logical_expr (INTRINSIC_OR, ne1, ne2); + break; + case A2B1: ar->start[0] = get_array_inq_function (GFC_ISYM_SIZE, a, 1); cond = build_logical_expr (INTRINSIC_NE, @@ -3009,7 +3023,7 @@ inline_matmul_assign (gfc_code **c, int *walk_subt a = expr2->value.function.actual; matrix_a = check_conjg_transpose_variable (a->expr, &conjg_a, &transpose_a); - if (transpose_a || matrix_a == NULL) + if (matrix_a == NULL) return 0; b = a->next; @@ -3026,27 +3040,36 @@ inline_matmul_assign (gfc_code **c, int *walk_subt || gfc_check_dependency (expr1, matrix_b, true)) return 0; + m_case = none; if (matrix_a->rank == 2) { - if (matrix_b->rank == 1) - m_case = A2B1; + if (transpose_a) + { + if (matrix_b->rank == 2 && !transpose_b) + m_case = A2TB2; + } else { - if (transpose_b) - m_case = A2B2T; - else - m_case = A2B2; + if (matrix_b->rank == 1) + m_case = A2B1; + else /* matrix_b->rank == 2 */ + { + if (transpose_b) + m_case = A2B2T; + else + m_case = A2B2; + } } } - else + else /* matrix_a->rank == 1 */ { - /* Vector * Transpose(B) not handled yet. */ - if (transpose_b) - m_case = none; - else - m_case = A1B2; + if (matrix_b->rank == 2) + { + if (!transpose_b) + m_case = A1B2; + } } - + if (m_case == none) return 0; @@ -3250,6 +3273,37 @@ inline_matmul_assign (gfc_code **c, int *walk_subt next_code_point = &test->next; } + + if (m_case == A2TB2) + { + c1 = get_array_inq_function (GFC_ISYM_SIZE, expr1, 1); + a2 = get_array_inq_function (GFC_ISYM_SIZE, matrix_a, 2); + + test = runtime_error_ne (c1, a2, "Incorrect extent in return array in " + "MATMUL intrinsic for dimension 1: " + "is %ld, should be %ld"); + + *next_code_point = test; + next_code_point = &test->next; + + c2 = get_array_inq_function (GFC_ISYM_SIZE, expr1, 2); + b2 = get_array_inq_function (GFC_ISYM_SIZE, matrix_b, 2); + test = runtime_error_ne (c2, b2, "Incorrect extent in return array in " + "MATMUL intrinsic for dimension 2: " + "is %ld, should be %ld"); + *next_code_point = test; + next_code_point = &test->next; + + a1 = get_array_inq_function (GFC_ISYM_SIZE, matrix_a, 1); + b1 = get_array_inq_function (GFC_ISYM_SIZE, matrix_b, 1); + + test = runtime_error_ne (b1, a1, "Incorrect extent in argument B in " + "MATMUL intrnisic for dimension 2: " + "is %ld, should be %ld"); + *next_code_point = test; + next_code_point = &test->next; + + } } *next_code_point = assign_zero; @@ -3331,6 +3385,39 @@ inline_matmul_assign (gfc_code **c, int *walk_subt break; + case A2TB2: + inline_limit_check (matrix_a, matrix_b, m_case); + + u1 = get_size_m1 (matrix_a, 2); + u2 = get_size_m1 (matrix_b, 2); + u3 = get_size_m1 (matrix_a, 1); + + do_1 = create_do_loop (gfc_copy_expr (zero), u1, NULL, &co->loc, ns); + do_2 = create_do_loop (gfc_copy_expr (zero), u2, NULL, &co->loc, ns); + do_3 = create_do_loop (gfc_copy_expr (zero), u3, NULL, &co->loc, ns); + + do_1->block->next = do_2; + do_2->block->next = do_3; + do_3->block->next = assign_matmul; + + var_1 = do_1->ext.iterator->var; + var_2 = do_2->ext.iterator->var; + var_3 = do_3->ext.iterator->var; + + list[0] = var_1; + list[1] = var_2; + cscalar = scalarized_expr (co->expr1, list, 2); + + list[0] = var_3; + list[1] = var_1; + ascalar = scalarized_expr (matrix_a, list, 2); + + list[0] = var_3; + list[1] = var_2; + bscalar = scalarized_expr (matrix_b, list, 2); + + break; + case A2B1: u1 = get_size_m1 (matrix_b, 1); u2 = get_size_m1 (matrix_a, 1);