On Mon, Jul 25, 2011 at 12:08 PM, Kai Tietz <ktiet...@googlemail.com> wrote: > Hello, > > this patch removes TRUTH-binary expressions and adjusts some places about > bitwise-binary-expressions. > > ChangeLog gcc > > 2011-07-25 Kai Tietz <kti...@redhat.com> > > * tree-vrp.c (extract_range_from_binary_expr): Remove > TRUTH-binary cases and add new bitwise cases. > (extract_range_from_assignment): Likewise. > (register_edge_assert_for_1): Likewise. > (register_edge_assert_for): Likewise. > (simplify_truth_ops_using_ranges): Likewise. > (simplify_stmt_using_ranges): Likewise. > > Bootstrapped and regression tested for all standard languages > (including Ada and Obj-C++) on > host x86_64-pc-linux-gnu. Ok for apply? > > > Regards, > Kai > > Index: gcc-head/gcc/tree-vrp.c > =================================================================== > --- gcc-head.orig/gcc/tree-vrp.c > +++ gcc-head/gcc/tree-vrp.c > @@ -2171,9 +2171,7 @@ extract_range_from_binary_expr (value_ra > && code != MIN_EXPR > && code != MAX_EXPR > && code != BIT_AND_EXPR > - && code != BIT_IOR_EXPR > - && code != TRUTH_AND_EXPR > - && code != TRUTH_OR_EXPR) > + && code != BIT_IOR_EXPR) > { > /* We can still do constant propagation here. */ > tree const_op0 = op_with_constant_singleton_value_range (op0); > @@ -2228,8 +2226,7 @@ extract_range_from_binary_expr (value_ra > divisions. TODO, we may be able to derive anti-ranges in > some cases. */ > if (code != BIT_AND_EXPR > - && code != TRUTH_AND_EXPR > - && code != TRUTH_OR_EXPR > + && code != BIT_IOR_EXPR > && code != TRUNC_DIV_EXPR > && code != FLOOR_DIV_EXPR > && code != CEIL_DIV_EXPR > @@ -2251,7 +2248,12 @@ extract_range_from_binary_expr (value_ra > || POINTER_TYPE_P (TREE_TYPE (op0)) > || POINTER_TYPE_P (TREE_TYPE (op1))) > { > - if (code == MIN_EXPR || code == MAX_EXPR) > + if (code == BIT_IOR_EXPR) > + { > + set_value_range_to_varying (vr); > + return; > + } > + else if (code == MIN_EXPR || code == MAX_EXPR) > { > /* For MIN/MAX expressions with pointers, we only care about > nullness, if both are non null, then the result is nonnull. > @@ -2296,57 +2298,9 @@ extract_range_from_binary_expr (value_ra > > /* For integer ranges, apply the operation to each end of the > range and see what we end up with. */ > - if (code == TRUTH_AND_EXPR > - || code == TRUTH_OR_EXPR) > - { > - /* If one of the operands is zero, we know that the whole > - expression evaluates zero. */ > - if (code == TRUTH_AND_EXPR > - && ((vr0.type == VR_RANGE > - && integer_zerop (vr0.min) > - && integer_zerop (vr0.max)) > - || (vr1.type == VR_RANGE > - && integer_zerop (vr1.min) > - && integer_zerop (vr1.max)))) > - { > - type = VR_RANGE; > - min = max = build_int_cst (expr_type, 0); > - } > - /* If one of the operands is one, we know that the whole > - expression evaluates one. */ > - else if (code == TRUTH_OR_EXPR > - && ((vr0.type == VR_RANGE > - && integer_onep (vr0.min) > - && integer_onep (vr0.max)) > - || (vr1.type == VR_RANGE > - && integer_onep (vr1.min) > - && integer_onep (vr1.max)))) > - { > - type = VR_RANGE; > - min = max = build_int_cst (expr_type, 1); > - } > - else if (vr0.type != VR_VARYING > - && vr1.type != VR_VARYING > - && vr0.type == vr1.type > - && !symbolic_range_p (&vr0) > - && !overflow_infinity_range_p (&vr0) > - && !symbolic_range_p (&vr1) > - && !overflow_infinity_range_p (&vr1)) > - { > - /* Boolean expressions cannot be folded with int_const_binop. */ > - min = fold_binary (code, expr_type, vr0.min, vr1.min); > - max = fold_binary (code, expr_type, vr0.max, vr1.max); > - } > - else > - { > - /* The result of a TRUTH_*_EXPR is always true or false. */ > - set_value_range_to_truthvalue (vr, expr_type); > - return; > - } > - } > - else if (code == PLUS_EXPR > - || code == MIN_EXPR > - || code == MAX_EXPR) > + if (code == PLUS_EXPR > + || code == MIN_EXPR > + || code == MAX_EXPR) > { > /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to > VR_VARYING. It would take more effort to compute a precise > @@ -2675,9 +2629,10 @@ extract_range_from_binary_expr (value_ra > else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR) > { > bool vr0_int_cst_singleton_p, vr1_int_cst_singleton_p; > - bool int_cst_range0, int_cst_range1; > + bool int_cst_range0, int_cst_range1, is_var_range; > double_int may_be_nonzero0, may_be_nonzero1; > double_int must_be_nonzero0, must_be_nonzero1; > + value_range_t *cst_vr, *var_vr; > > vr0_int_cst_singleton_p = range_int_cst_singleton_p (&vr0); > vr1_int_cst_singleton_p = range_int_cst_singleton_p (&vr1); > @@ -2686,9 +2641,47 @@ extract_range_from_binary_expr (value_ra > int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, > &must_be_nonzero1); > > + cst_vr = (vr0_int_cst_singleton_p ? &vr0 : &vr1);
singleton_val = vr0_int_cst_singleton_p ? vr0.min : vr1.min avoids writing cst_vr->min / cst_vr->max below when they are the same anyway, thus making the code reasier to read. > + var_vr = (vr0_int_cst_singleton_p ? &vr1 : &vr0); non_singleton_vr = ... these are easier to understand imho. > + is_var_range = (vr0_int_cst_singleton_p ? int_cst_range1 : > int_cst_range0); > + > type = VR_RANGE; > if (vr0_int_cst_singleton_p && vr1_int_cst_singleton_p) > min = max = int_const_binop (code, vr0.max, vr1.max); > + else if ((vr0_int_cst_singleton_p || vr1_int_cst_singleton_p) > + && (integer_zerop (cst_vr->max) > + || integer_all_onesp (cst_vr->max))) > + { > + /* If one of the operands is zero, we know that the whole > + expression evaluates zero. */ > + if (code == BIT_AND_EXPR && integer_zerop (cst_vr->max)) > + min = max = build_int_cst (expr_type, 0); You can re-use singleton_val. > + /* If one of the operands has all bits set to one, we know > + that the whole expression evaluates to this one. */ > + else if (code == BIT_IOR_EXPR && integer_all_onesp (cst_vr->max)) > + min = max = fold_convert (expr_type, cst_vr->min); For example here you mix ->max and ->min. I think you do not need the fold_convert calls. > + /* If one of the operands has all bits set to one, we know > + that the whole expression evaluates to the other one. */ > + else if (code == BIT_AND_EXPR && integer_all_onesp (cst_vr->max) > + && is_var_range) > + { > + min = fold_convert (expr_type, var_vr->min); > + max = fold_convert (expr_type, var_vr->max); Likewise. This is also valid if !is_var_range, so why restrict it to the is_var_range case (I note that zero_nonzero_bits_from_vr does not even return true for all integer ranges)? > + } > + /* If one of the operands is zero, we know that the whole > + expression evaluates to the other one. */ > + else if (code == BIT_IOR_EXPR && integer_zerop (cst_vr->max) > + && is_var_range) > + { > + min = fold_convert (expr_type, var_vr->min); > + max = fold_convert (expr_type, var_vr->max); Likewise. > + } > + else > + { > + set_value_range_to_varying (vr); > + return; > + } Re-structuring the ifs to non-nested like if (code == BIT_AND_EXPR && integer_zerop (singleton_val)) ... else if (code == ...) doesn't make it necessary to repeat the set-to-varying case. It also makes sure we apply the remaining case. The rest of the patch looks good to me. Thanks, Richard. > + } > else if (!int_cst_range0 && !int_cst_range1) > { > set_value_range_to_varying (vr); > @@ -3300,10 +3293,7 @@ extract_range_from_assignment (value_ran > extract_range_from_assert (vr, gimple_assign_rhs1 (stmt)); > else if (code == SSA_NAME) > extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt)); > - else if (TREE_CODE_CLASS (code) == tcc_binary > - || code == TRUTH_AND_EXPR > - || code == TRUTH_OR_EXPR > - || code == TRUTH_XOR_EXPR) > + else if (TREE_CODE_CLASS (code) == tcc_binary) > extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt), > gimple_expr_type (stmt), > gimple_assign_rhs1 (stmt), > @@ -4516,11 +4506,9 @@ register_edge_assert_for_1 (tree op, enu > invert); > } > else if ((code == NE_EXPR > - && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR > - || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)) > + && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR) > || (code == EQ_EXPR > - && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR > - || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))) > + && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)) > { > /* Recurse on each operand. */ > retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), > @@ -4585,8 +4573,8 @@ register_edge_assert_for (tree name, edg > the value zero or one, then we may be able to assert values > for SSA_NAMEs which flow into COND. */ > > - /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining > - statement of NAME we can assert both operands of the TRUTH_AND_EXPR > + /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining > + statement of NAME we can assert both operands of the BIT_AND_EXPR > have nonzero value. */ > if (((comp_code == EQ_EXPR && integer_onep (val)) > || (comp_code == NE_EXPR && integer_zerop (val)))) > @@ -4594,8 +4582,7 @@ register_edge_assert_for (tree name, edg > gimple def_stmt = SSA_NAME_DEF_STMT (name); > > if (is_gimple_assign (def_stmt) > - && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR > - || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)) > + && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR) > { > tree op0 = gimple_assign_rhs1 (def_stmt); > tree op1 = gimple_assign_rhs2 (def_stmt); > @@ -4604,20 +4591,20 @@ register_edge_assert_for (tree name, edg > } > } > > - /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining > - statement of NAME we can assert both operands of the TRUTH_OR_EXPR > + /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining > + statement of NAME we can assert both operands of the BIT_IOR_EXPR > have zero value. */ > if (((comp_code == EQ_EXPR && integer_zerop (val)) > || (comp_code == NE_EXPR && integer_onep (val)))) > { > gimple def_stmt = SSA_NAME_DEF_STMT (name); > > + /* For BIT_IOR_EXPR only if NAME == 0 both operands have > + necessarily zero value, or if type-precision is one. */ > if (is_gimple_assign (def_stmt) > - && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR > - /* For BIT_IOR_EXPR only if NAME == 0 both operands have > - necessarily zero value. */ > - || (comp_code == EQ_EXPR > - && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)))) > + && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR > + && (TYPE_PRECISION (TREE_TYPE (name)) == 1 > + || comp_code == EQ_EXPR))) > { > tree op0 = gimple_assign_rhs1 (def_stmt); > tree op1 = gimple_assign_rhs2 (def_stmt); > @@ -6786,8 +6773,7 @@ simplify_truth_ops_using_ranges (gimple_ > { > /* Exclude anything that should have been already folded. */ > if (rhs_code != EQ_EXPR > - && rhs_code != NE_EXPR > - && rhs_code != TRUTH_XOR_EXPR) > + && rhs_code != NE_EXPR) > return false; > > if (!integer_zerop (op1) > @@ -6831,14 +6817,9 @@ simplify_truth_ops_using_ranges (gimple_ > else > location = gimple_location (stmt); > > - if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR) > - warning_at (location, OPT_Wstrict_overflow, > - _("assuming signed overflow does not occur when " > - "simplifying && or || to & or |")); > - else > - warning_at (location, OPT_Wstrict_overflow, > - _("assuming signed overflow does not occur when " > - "simplifying ==, != or ! to identity or ^")); > + warning_at (location, OPT_Wstrict_overflow, > + _("assuming signed overflow does not occur when " > + "simplifying ==, != or ! to identity or ^")); > } > > need_conversion = > @@ -6853,13 +6834,6 @@ simplify_truth_ops_using_ranges (gimple_ > > switch (rhs_code) > { > - case TRUTH_AND_EXPR: > - rhs_code = BIT_AND_EXPR; > - break; > - case TRUTH_OR_EXPR: > - rhs_code = BIT_IOR_EXPR; > - break; > - case TRUTH_XOR_EXPR: > case NE_EXPR: > if (integer_zerop (op1)) > { > @@ -7415,9 +7389,6 @@ simplify_stmt_using_ranges (gimple_stmt_ > case EQ_EXPR: > case NE_EXPR: > case TRUTH_NOT_EXPR: > - case TRUTH_AND_EXPR: > - case TRUTH_OR_EXPR: > - case TRUTH_XOR_EXPR: > /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR > or identity if the RHS is zero or one, and the LHS are known > to be boolean values. Transform all TRUTH_*_EXPR into >