Hi all,

GCC has some logic to expand calls to pow (x, 0.75), pow (0.25) and pow (x, 
(int)k + 0.5)
using square roots. So, for the above examples it would generate sqrt (x) * 
sqrt (sqrt (x)),
sqrt (sqrt (x)) and powi (x, k) * sqrt (x) (assuming k > 0. For k < 0 it will 
calculate the
reciprocal of that).

However, the implementation of these optimisations is done on a bit of an 
ad-hoc basis with
the 0.25, 0.5, 0.75 cases hardcoded.
Judging by 
https://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=get&target=meissner2.pdf
these are the most commonly used exponents (at least in SPEC ;))

This patch generalises this optimisation into a (hopefully) more robust 
algorithm.
In particular, it expands calls to pow (x, CST) by expanding the integer part 
of CST
using a powi, like it does already, and then expanding the fractional part as a 
product
of repeated applications of a square root if the fractional part can be 
expressed
as a multiple of a power of 0.5.

I try to explain the algorithm in more detail in the comments in the patch but, 
for example:

pow (x, 5.625) is not currently handled, but with this patch will be expanded
to powi (x, 5) * sqrt (x) * sqrt (sqrt (sqrt (x))) because 5.625 == 5.0 + 0.5 + 
0.5**3

Negative exponents are handled in either of two ways, depending on the exponent 
value:
* Using a simple reciprocal.
  For example:
  pow (x, -5.625) == 1.0 / pow (x, 5.625)
    --> 1.0 / (powi (x, 5) * sqrt (x) * sqrt (sqrt (sqrt (x))))

* For pow (x, EXP) with negative exponent EXP with integer part INT and 
fractional part FRAC:
pow (1.0 - FRAC) / powi (ceil (abs (EXP))).
  For example:
  pow (x, -5.875) == pow (x, 0.125) / powi (X, 6)
    --> sqrt (sqrt (sqrt (x))) / (powi (x, 6))


Since hardware square root instructions tend to be expensive, we may want to 
reduce the number
of square roots we are willing to calculate. Since we reuse intermediate square 
root results,
this boils down to restricting the depth of the square root chains. In all the 
examples above
that depth is 3. I've made this maximum depth parametrisable in params.def. By 
adjusting that
parameter we can adjust the resolution of this optimisation. So, if it's set to 
'4' then we
will synthesize every exponent that is a multiple of 0.5**4 == 0.0625, 
including negative
multiples. Currently, GCC will not try to expand negative multiples of anything 
else than 0.5

I have tried to keep the existing functionality intact and activate this only 
for
-funsafe-math-optimizations and only when the target has a sqrt instruction.
 An exception to that is pow (x, 0.5) which we prefer to transform to sqrt even
when a hardware sqrt is not available, presumably because the library function 
for
sqrt is usually faster than pow (?).


Having seen the glibc implementation of a fully IEEE-754-compliant pow 
function, I think we
would prefer synthesising the pow call whenever we can for -ffast-math.

I have seen this optimisation trigger a few times in SPEC2k6, in particular in 
447.dealII
and 481.wrf where it replaced calls to powf (x, -0.25), pow (x, 0.125) and pow 
(x, 0.875)
with square roots, multiplies and, in the case of -0.25, divides.
On 481.wrf I saw it remove a total of 22 out of 322 calls to pow

On 481.wrf on aarch64 I saw about a 1% improvement.
The cycle count on x86_64 was also smaller, but not by a significant amount 
(the same calls to
pow were eliminated).

In general, I think this can shine if multiple expandable calls to pow appear 
together.
So, for example for code:
double
baz (double a)
{
  return __builtin_pow (a, -1.25) + __builtin_pow (a, 5.75) - __builtin_pow (a, 
3.375);
}

we can generate:
baz:
        fsqrt   d3, d0
        fmul    d4, d0, d0
        fmov    d5, 1.0e+0
        fmul    d6, d0, d4
        fsqrt   d2, d3
        fmul    d1, d0, d2
        fsqrt   d0, d2
        fmul    d3, d3, d2
        fdiv    d1, d5, d1
        fmul    d3, d3, d6
        fmul    d2, d2, d0
        fmadd   d0, d4, d3, d1
        fmsub   d0, d6, d2, d0
        ret

reusing the sqrt results and doing more optimisations rather than the current:
baz:
        stp     x29, x30, [sp, -48]!
        fmov    d1, -1.25e+0
        add     x29, sp, 0
        stp     d8, d9, [sp, 16]
        fmov    d9, d0
        str     d10, [sp, 32]
        bl      pow
        fmov    d8, d0
        fmov    d0, d9
        fmov    d1, 5.75e+0
        bl      pow
        fmov    d10, d0
        fmov    d0, d9
        fmov    d1, 3.375e+0
        bl      pow
        fadd    d8, d8, d10
        ldr     d10, [sp, 32]
        fsub    d0, d8, d0
        ldp     d8, d9, [sp, 16]
        ldp     x29, x30, [sp], 48
        ret


Of course gcc could already do that if the exponents were to fall in the set 
{0.25, 0.75, k+0.5}
but with this patch that set can be greatly expanded.

I suppose if we're really lucky we might even open up new vectorisation 
opportunities.
For example:
void
vecfoo (float *a, float *b)
{
  for (int i = 0; i < N; i++)
    a[i] = __builtin_powf (a[i], 1.25f) - __builtin_powf (b[i], 3.625);
}

will now be vectorisable if we have a hardware vector sqrt instruction. Though 
I'm not sure
how often this would appear in real code.


I would like advice on some implementation details:
- The new function representable_as_half_series_p is used to check if the 
fractional
part of an exponent can be represented as a multiple of a power of 0.5. It does 
so
by using REAL_VALUE_TYPE arithmetic and a loop. I wonder whether there is a 
smarter
way of doing this, considering that REAL_VALUE_TYPE holds the bit 
representation of the
floating point number?

- Are there any correctness cases that I may have missed? This patch gates the 
optimisation
on -funsafe-math-optimizations, but maybe there are some edge cases that I 
missed?

- What should be the default value of the max-pow-sqrt-depth param? In this 
patch it's 5 which
on second thought strikes me as a bit aggressive. To catch exponents that are 
multiples of
0.25 we need it to be 2. For multiples of 0.125 it has to be 3 etc... I suppose 
it depends on
how likely more fine-grained powers are to appear in real code, how expensive 
the C library
implementation of pow is, and how expensive are the sqrt instructions in 
hardware.


Bootstrapped and tested on x86_64, aarch64, arm (pending)
SPEC2k6 built and ran fine. Can anyone suggest anything other codebase that 
might
be of interest to look at?

Thanks,
Kyrill

2015-05-01  Kyrylo Tkachov  <kyrylo.tkac...@arm.com>

    * params.def (PARAM_MAX_POW_SQRT_DEPTH): New param.
    * tree-ssa-math-opts.c: Include params.h
    (pow_synth_sqrt_info): New struct.
    (representable_as_half_series_p): New function.
    (get_fn_chain): Likewise.
    (print_nested_fn): Likewise.
    (dump_fractional_sqrt_sequence): Likewise.
    (dump_integer_part): Likewise.
    (expand_pow_as_sqrts): Likewise.
    (gimple_expand_builtin_pow): Use above to attempt to expand
    pow as series of square roots.  Removed now unused variables.

2015-05-01  Kyrylo Tkachov  <kyrylo.tkac...@arm.com>

    * gcc.dg/pow-sqrt.x: New file.
    * gcc.dg/pow-sqrt-1.c: New test.
    * gcc.dg/pow-sqrt-2.c: Likewise.
    * gcc.dg/pow-sqrt-3.c: Likewise.
commit 097f1526dcc09dcacb83fd0c70043a7f50b2f078
Author: Kyrylo Tkachov <kyrylo.tkac...@arm.com>
Date:   Wed Apr 29 13:27:07 2015 +0100

    [tree-ssa-math-opts] Expand pow (x, CONST) using square roots when possible

diff --git a/gcc/params.def b/gcc/params.def
index 48b39a2..3e4ba3a 100644
--- a/gcc/params.def
+++ b/gcc/params.def
@@ -262,6 +262,14 @@ DEFPARAM(PARAM_MAX_HOIST_DEPTH,
 	 "Maximum depth of search in the dominator tree for expressions to hoist",
 	 30, 0, 0)
 
+
+/* When synthesizing expnonentiation by a real constant operations using square
+   roots, this controls how deep sqrt chains we are willing to generate.  */
+DEFPARAM(PARAM_MAX_POW_SQRT_DEPTH,
+	 "max-pow-sqrt-depth",
+	 "Maximum depth of sqrt chains to use when synthesizing exponentiation by a real constant",
+	 5, 1, 32)
+
 /* This parameter limits the number of insns in a loop that will be unrolled,
    and by how much the loop is unrolled.
 
diff --git a/gcc/testsuite/gcc.dg/pow-sqrt-1.c b/gcc/testsuite/gcc.dg/pow-sqrt-1.c
new file mode 100644
index 0000000..0793b6f
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/pow-sqrt-1.c
@@ -0,0 +1,6 @@
+/* { dg-do run } */
+/* { dg-options "-O2 -ffast-math --param max-pow-sqrt-depth=5" } */
+
+#define EXPN (-6 * (0.5*0.5*0.5*0.5))
+
+#include "pow-sqrt.x"
diff --git a/gcc/testsuite/gcc.dg/pow-sqrt-2.c b/gcc/testsuite/gcc.dg/pow-sqrt-2.c
new file mode 100644
index 0000000..b2fada4
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/pow-sqrt-2.c
@@ -0,0 +1,5 @@
+/* { dg-do run } */
+/* { dg-options "-O2 -ffast-math --param max-pow-sqrt-depth=5" } */
+
+#define EXPN (-5.875)
+#include "pow-sqrt.x"
diff --git a/gcc/testsuite/gcc.dg/pow-sqrt-3.c b/gcc/testsuite/gcc.dg/pow-sqrt-3.c
new file mode 100644
index 0000000..18c7231
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/pow-sqrt-3.c
@@ -0,0 +1,5 @@
+/* { dg-do run } */
+/* { dg-options "-O2 -ffast-math --param max-pow-sqrt-depth=3" } */
+
+#define EXPN (1.25)
+#include "pow-sqrt.x"
diff --git a/gcc/testsuite/gcc.dg/pow-sqrt.x b/gcc/testsuite/gcc.dg/pow-sqrt.x
new file mode 100644
index 0000000..bd744c6
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/pow-sqrt.x
@@ -0,0 +1,30 @@
+
+extern void abort (void);
+
+
+__attribute__((noinline)) double
+real_pow (double x, double pow_exp)
+{
+  return __builtin_pow (x, pow_exp);
+}
+
+#define EPS (0.000000000000000000001)
+
+#define SYNTH_POW(X, Y) __builtin_pow (X, Y)
+volatile double arg;
+
+int
+main (void)
+{
+  double i_arg = 0.1;
+
+  for (arg = i_arg; arg < 100.0; arg += 1.0)
+    {
+      double synth_res = SYNTH_POW (arg, EXPN);
+      double real_res = real_pow (arg, EXPN);
+
+      if (__builtin_abs (SYNTH_POW (arg, EXPN) - real_pow (arg, EXPN)) > EPS)
+	abort ();
+    }
+  return 0;
+}
diff --git a/gcc/tree-ssa-math-opts.c b/gcc/tree-ssa-math-opts.c
index c22a677..36549d9 100644
--- a/gcc/tree-ssa-math-opts.c
+++ b/gcc/tree-ssa-math-opts.c
@@ -143,6 +143,7 @@ along with GCC; see the file COPYING3.  If not see
 #include "target.h"
 #include "gimple-pretty-print.h"
 #include "builtins.h"
+#include "params.h"
 
 /* FIXME: RTL headers have to be included here for optabs.  */
 #include "rtl.h"		/* Because optabs.h wants enum rtx_code.  */
@@ -1148,6 +1149,370 @@ build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
   return result;
 }
 
+struct pow_synth_sqrt_info
+{
+  bool *factors;
+  unsigned int deepest;
+  unsigned int num_mults;
+};
+
+/* Return true iff the real value C can be represented as a
+   sum of powers of 0.5 up to N.  That is:
+   C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
+   Record in INFO the various parameters of the synthesis algorithm such
+   as the factors a[i], the maximum 0.5 power and the number of
+   multiplications that will be required.  */
+
+bool
+representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
+				 struct pow_synth_sqrt_info *info)
+{
+  REAL_VALUE_TYPE factor = dconsthalf;
+  REAL_VALUE_TYPE remainder = c;
+
+  info->deepest = 0;
+  info->num_mults = 0;
+  memset (info->factors, 0, n * sizeof (bool));
+
+  for (unsigned i = 0; i < n; i++)
+    {
+      REAL_VALUE_TYPE res;
+
+      /* If something inexact happened bail out now.  */
+      if (REAL_ARITHMETIC (res, MINUS_EXPR, remainder, factor))
+	return false;
+
+      /* We have hit zero.  The number is representable as a sum
+         of powers of 0.5.  */
+      if (REAL_VALUES_EQUAL (res, dconst0))
+	{
+	  info->factors[i] = true;
+	  info->deepest = i + 1;
+	  return true;
+	}
+      else if (!REAL_VALUE_NEGATIVE (res))
+	{
+	  remainder = res;
+	  info->factors[i] = true;
+	  info->num_mults++;
+	}
+      else
+	info->factors[i] = false;
+
+      REAL_ARITHMETIC (factor, MULT_EXPR, factor, dconsthalf);
+    }
+  return false;
+}
+
+/* Return the tree corresponding to FN being applied
+   to ARG N times at GSI and LOC.
+   Look up previous results from CACHE if need be.
+   cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times.  */
+
+static tree
+get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
+	      tree fn, location_t loc, tree *cache)
+{
+  tree res = cache[n];
+  if (!res)
+    {
+      tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache);
+      res = build_and_insert_call (gsi, loc, fn, prev);
+      cache[n] = res;
+    }
+
+  return res;
+}
+
+/* Print to STREAM the repeated application of function FNAME to ARG
+   N times.  So, for FNAME = "foo", ARG = "x", N = 2 it would print:
+   "foo (foo (x))".  */
+
+static void
+print_nested_fn (FILE* stream, const char *fname, const char* arg,
+		 unsigned int n)
+{
+  if (n == 0)
+    fprintf (stream, "%s", arg);
+  else
+    {
+      fprintf (stream, "%s (", fname);
+      print_nested_fn (stream, fname, arg, n - 1);
+      fprintf (stream, ")");
+    }
+}
+
+/* Print to STREAM the fractional sequence of sqrt chains
+   applied to ARG, described by INFO.  Used for the dump file.  */
+
+static void
+dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
+			        struct pow_synth_sqrt_info *info)
+{
+  for (unsigned int i = 0; i < info->deepest; i++)
+    {
+      bool is_set = info->factors[i];
+      if (is_set)
+	{
+	  print_nested_fn (stream, "sqrt", arg, i + 1);
+	  if (i != info->deepest - 1)
+	    fprintf (stream, " * ");
+	}
+    }
+}
+
+/* Print to STREAM a representation of raising ARG to an integer
+   power N.  Used for the dump file.  */
+
+static void
+dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
+{
+  if (n > 1)
+    fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
+  else if (n == 1)
+    fprintf (stream, "%s", arg);
+}
+
+/* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
+   square roots.  Place at GSI and LOC.  Limit the maximum depth
+   of the sqrt chains to MAX_DEPTH.  Return the tree holding the
+   result of the expanded sequence or NULL_TREE if the expansion failed.
+
+   This routine assumes that ARG1 is a real number with a fractional part
+   (the integer exponent case will have been handled earlier in
+   gimple_expand_builtin_pow).
+
+   For ARG1 > 0.0:
+   * For ARG1 composed of a whole part WHOLE_PART and a fractional part
+     FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
+                    FRAC_PART := ARG1 - WHOLE_PART:
+     Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
+     POW (ARG0, FRAC_PART) is expanded as a product of square root chains
+     if it can be expressed as such, that is if FRAC_PART satisfies:
+     FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
+     where integer a[i] is either 0 or 1.
+
+     Example:
+     POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
+       --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
+
+   For ARG1 < 0.0 there are two approaches:
+   * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
+         is calculated as above.
+
+     Example:
+     POW (x, -5.625) == 1.0 / POW (x, 5.625)
+       -->  1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
+
+   * (B) : WHOLE_PART := - ceil (abs (ARG1))
+           FRAC_PART  := ARG1 - WHOLE_PART
+     and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
+     Example:
+     POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
+       --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
+
+   For ARG1 < 0.0 we choose between (A) and (B) depending on
+   how many multiplications we'd have to do.
+   So, for the example in (B): POW (x, -5.875), if we were to
+   follow algorithm (A) we would produce:
+   1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
+   which contains more multiplications than approach (B).
+
+   Hopefully, this approach will eliminate potentially expensive POW library
+   calls when unsafe floating point math is enabled and allow the compiler to
+   further optimise the multiplies, square roots and divides produced by this
+   function.  When optimising for size restrict the maximum number of allowed
+   multiplications and the depth of square root chains.  */
+
+static tree
+expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
+		      tree arg0, tree arg1, HOST_WIDE_INT max_depth)
+{
+  tree type = TREE_TYPE (arg0);
+  machine_mode mode = TYPE_MODE (type);
+  tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
+  bool one_over = true;
+
+  bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi));
+  if (!sqrtfn)
+    return NULL_TREE;
+
+  if (TREE_CODE (arg1) != REAL_CST)
+    return NULL_TREE;
+
+  REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);
+
+  gcc_assert (max_depth > 0);
+  tree *cache = XALLOCAVEC (tree, max_depth + 1);
+
+  struct pow_synth_sqrt_info synth_info;
+  synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
+  synth_info.deepest = 0;
+  synth_info.num_mults = 0;
+
+  bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
+  REAL_VALUE_TYPE exp = real_value_abs (&exp_init);
+
+  /* If optimising for size don't try to expand negative
+     exponents as they include an extra divide step.  */
+  if (neg_exp && !speed_p)
+    return NULL_TREE;
+
+  /* The whole and fractional parts of exp.  */
+  REAL_VALUE_TYPE whole_part;
+  REAL_VALUE_TYPE frac_part;
+
+  real_floor (&whole_part, mode, &exp);
+  REAL_ARITHMETIC (frac_part, MINUS_EXPR, exp, whole_part);
+
+
+  REAL_VALUE_TYPE ceil_whole = dconst0;
+  REAL_VALUE_TYPE ceil_fract = dconst0;
+
+  if (neg_exp)
+    {
+      real_ceil (&ceil_whole, mode, &exp);
+      REAL_ARITHMETIC (ceil_fract, MINUS_EXPR, ceil_whole, exp);
+    }
+
+  if (!representable_as_half_series_p (frac_part, max_depth, &synth_info))
+    return NULL_TREE;
+
+  /* Check whether it's more profitable to not use 1.0 / ...  */
+  if (neg_exp)
+    {
+      struct pow_synth_sqrt_info alt_synth_info;
+      alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
+      alt_synth_info.deepest = 0;
+      alt_synth_info.num_mults = 0;
+
+      if (representable_as_half_series_p (ceil_fract, max_depth,
+					   &alt_synth_info)
+	  && alt_synth_info.deepest <= synth_info.deepest
+	  && alt_synth_info.num_mults < synth_info.num_mults)
+	{
+	  whole_part = ceil_whole;
+	  frac_part = ceil_fract;
+	  synth_info.deepest = alt_synth_info.deepest;
+	  synth_info.num_mults = alt_synth_info.num_mults;
+	  memcpy (synth_info.factors, alt_synth_info.factors,
+		  (max_depth + 1) * sizeof (bool));
+	  one_over = false;
+	}
+    }
+
+  /* When optimising for size don't allow deep sqrt chains
+     or a large number of multiplies.  */
+  if (!speed_p
+      && (synth_info.deepest + synth_info.num_mults) > 3)
+    return NULL_TREE;
+
+  HOST_WIDE_INT n = real_to_integer (&whole_part);
+  REAL_VALUE_TYPE cint;
+  real_from_integer (&cint, VOIDmode, n, SIGNED);
+
+  if (!real_identical (&whole_part, &cint))
+    return NULL_TREE;
+
+  if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
+    return NULL_TREE;
+
+  memset (cache, 0, (max_depth + 1) * sizeof (tree));
+
+  tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;
+
+  /* Calculate the integer part of the exponent.  */
+  if (n > 1)
+    {
+      integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
+      if (!integer_res)
+	return NULL_TREE;
+    }
+
+  if (dump_file)
+    {
+      char string[64];
+
+      real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
+      fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string);
+
+      if (neg_exp)
+	{
+	  if (one_over)
+	    {
+	      fprintf (dump_file, "1.0 / (");
+	      dump_integer_part (dump_file, "x", n);
+	      if (n > 0)
+	        fprintf (dump_file, " * ");
+	      dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
+	      fprintf (dump_file, ")");
+	    }
+	  else
+	    {
+	      dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
+	      fprintf (dump_file, " / (");
+	      dump_integer_part (dump_file, "x", n);
+	      fprintf (dump_file, ")");
+	    }
+	}
+      else
+	{
+	  dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
+	  if (n > 0)
+	    fprintf (dump_file, " * ");
+	  dump_integer_part (dump_file, "x", n);
+	}
+
+      fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest);
+    }
+
+
+  tree fract_res = NULL_TREE;
+  cache[0] = arg0;
+
+  /* Calculate the fractional part of the exponent.  */
+  for (unsigned i = 0; i < synth_info.deepest; i++)
+    {
+      if (synth_info.factors[i])
+	{
+	  tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache);
+
+	  if (!fract_res)
+	      fract_res = sqrt_chain;
+
+	  else
+	    fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
+					   fract_res, sqrt_chain);
+	}
+    }
+
+  tree res = NULL_TREE;
+
+  if (neg_exp)
+    {
+      if (one_over)
+	{
+	  if (n > 0)
+	    res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
+					   fract_res, integer_res);
+	  else
+	    res = fract_res;
+
+	  res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR,
+					  build_real (type, dconst1), res);
+	}
+      else
+	{
+	  res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
+					 fract_res, integer_res);
+	}
+    }
+  else
+    res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
+				   fract_res, integer_res);
+  return res;
+}
+
 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
    with location info LOC.  If possible, create an equivalent and
    less expensive sequence of statements prior to GSI, and return an
@@ -1157,10 +1522,10 @@ static tree
 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc, 
 			   tree arg0, tree arg1)
 {
-  REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
+  REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_6;
   REAL_VALUE_TYPE c2, dconst3;
   HOST_WIDE_INT n;
-  tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
+  tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
   machine_mode mode;
   bool hw_sqrt_exists, c_is_int, c2_is_int;
 
@@ -1188,57 +1553,8 @@ gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
   mode = TYPE_MODE (type);
   sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
 
-  /* Optimize pow(x,0.5) = sqrt(x).  This replacement is always safe
-     unless signed zeros must be maintained.  pow(-0,0.5) = +0, while
-     sqrt(-0) = -0.  */
-  if (sqrtfn
-      && REAL_VALUES_EQUAL (c, dconsthalf)
-      && !HONOR_SIGNED_ZEROS (mode))
-    return build_and_insert_call (gsi, loc, sqrtfn, arg0);
-
-  /* Optimize pow(x,0.25) = sqrt(sqrt(x)).  Assume on most machines that
-     a builtin sqrt instruction is smaller than a call to pow with 0.25,
-     so do this optimization even if -Os.  Don't do this optimization
-     if we don't have a hardware sqrt insn.  */
-  dconst1_4 = dconst1;
-  SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
   hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
 
-  if (flag_unsafe_math_optimizations
-      && sqrtfn
-      && REAL_VALUES_EQUAL (c, dconst1_4)
-      && hw_sqrt_exists)
-    {
-      /* sqrt(x)  */
-      sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
-
-      /* sqrt(sqrt(x))  */
-      return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
-    }
-      
-  /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
-     optimizing for space.  Don't do this optimization if we don't have
-     a hardware sqrt insn.  */
-  real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
-  SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
-
-  if (flag_unsafe_math_optimizations
-      && sqrtfn
-      && optimize_function_for_speed_p (cfun)
-      && REAL_VALUES_EQUAL (c, dconst3_4)
-      && hw_sqrt_exists)
-    {
-      /* sqrt(x)  */
-      sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
-
-      /* sqrt(sqrt(x))  */
-      sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
-
-      /* sqrt(x) * sqrt(sqrt(x))  */
-      return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
-				     sqrt_arg0, sqrt_sqrt);
-    }
-
   /* Optimize pow(x,1./3.) = cbrt(x).  This requires unsafe math
      optimizations since 1./3. is not exactly representable.  If x
      is negative and finite, the correct value of pow(x,1./3.) is
@@ -1274,54 +1590,29 @@ gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
       return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
     }
 
-  /* Optimize pow(x,c), where n = 2c for some nonzero integer n
-     and c not an integer, into
-
-       sqrt(x) * powi(x, n/2),                n > 0;
-       1.0 / (sqrt(x) * powi(x, abs(n/2))),   n < 0.
-
-     Do not calculate the powi factor when n/2 = 0.  */
-  real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
-  n = real_to_integer (&c2);
-  real_from_integer (&cint, VOIDmode, n, SIGNED);
-  c2_is_int = real_identical (&c2, &cint);
 
+  /* Attempt to expand the POW as a product of square root chains.
+     Do not try this if there is no hardware sqrt instruction *except*
+     in the case where the exponent is 0.5, where we assume it will always
+     be beneficial.  */
   if (flag_unsafe_math_optimizations
       && sqrtfn
-      && c2_is_int
-      && !c_is_int
-      && optimize_function_for_speed_p (cfun))
+      && (hw_sqrt_exists || REAL_VALUES_EQUAL (c, dconsthalf))
+      && !HONOR_SIGNED_ZEROS (mode))
     {
-      tree powi_x_ndiv2 = NULL_TREE;
-
-      /* Attempt to fold powi(arg0, abs(n/2)) into multiplies.  If not
-         possible or profitable, give up.  Skip the degenerate case when
-         n is 1 or -1, where the result is always 1.  */
-      if (absu_hwi (n) != 1)
-	{
-	  powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
-						     abs_hwi (n / 2));
-	  if (!powi_x_ndiv2)
-	    return NULL_TREE;
-	}
-
-      /* Calculate sqrt(x).  When n is not 1 or -1, multiply it by the
-	 result of the optimal multiply sequence just calculated.  */
-      sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
+      tree expand_with_sqrts
+	= expand_pow_as_sqrts (gsi, loc, arg0, arg1,
+			       PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH));
 
-      if (absu_hwi (n) == 1)
-	result = sqrt_arg0;
-      else
-	result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
-					 sqrt_arg0, powi_x_ndiv2);
-
-      /* If n is negative, reciprocate the result.  */
-      if (n < 0)
-	result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
-					 build_real (type, dconst1), result);
-      return result;
+      if (expand_with_sqrts)
+	return expand_with_sqrts;
     }
 
+  real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
+  n = real_to_integer (&c2);
+  real_from_integer (&cint, VOIDmode, n, SIGNED);
+  c2_is_int = real_identical (&c2, &cint);
+
   /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
 
      powi(x, n/3) * powi(cbrt(x), n%3),                    n > 0;

Reply via email to