I have done some timings (1) with the test given below, before the patch I get (last column in Gflops)
[Book15] f90/bug% gfc -Ofast timing/matmul_tst_sys.f90 -framework Accelerate [Book15] f90/bug% time a.out Time, MATMUL: 373.708008 373.69497100000001 4.2815668504139435 Time, MATMUL: 172.086609 23.117919000000001 69.210381782201068 545.374u 0.537s 6:36.93 137.5% 0+0k 0+0io 0pf+0w [Book15] f90/bug% gfc -Ofast -fexternal-blas timing/matmul_tst_sys.f90 -framework Accelerate [Book15] f90/bug% time a.out Time, MATMUL: 176.327881 23.855111999999998 67.071577781735002 Time, MATMUL: 182.086746 24.453551000000001 65.430170039516952 358.059u 0.471s 0:48.43 740.2% 0+0k 0+0io 0pf+0w after the patch [Book15] f90/bug% time a.out Time, MATMUL: 392.415436 392.41728799999999 4.0772923337669056 Time, MATMUL: 171.690399 22.905118000000002 69.853383859450091 563.671u 0.551s 6:55.44 135.8% 0+0k 0+0io 0pf+0w [Book15] f90/bug% gfc -Ofast -fexternal-blas timing/matmul_tst_sys.f90 -framework Accelerate [Book15] f90/bug% time a.out Time, MATMUL: 392.850342 392.84190799999999 4.0728852177349673 Time, MATMUL: 174.534821 23.784797000000001 67.269861500184334 566.824u 0.674s 6:56.74 136.1% 0+0k 0+0io 0pf+0w which means that -fexternal-blas should disable the inlining. program t2 implicit none REAL time_begin, time_end integer, parameter :: n=2000; integer(8) :: ts, te, rate8, cmax8 real(8) :: elapsed REAL(8) :: a(n,n), b(n,n), c(n,n) integer, parameter :: m = 100 integer :: i call RANDOM_NUMBER(a) call RANDOM_NUMBER(b) call cpu_time(time_begin) call SYSTEM_CLOCK (ts, rate8, cmax8) do i = 1,m a(1,1) = a(1,1) + 0.1 c = MATMUL(a,b) enddo call SYSTEM_CLOCK (te, rate8, cmax8) call cpu_time(time_end) elapsed = real(te-ts, kind=8)/real(rate8, kind=8) PRINT *, 'Time, MATMUL: ',time_end-time_begin, elapsed , 2*m*real(n, kind=8)**3/(10**9*elapsed) call cpu_time(time_begin) call SYSTEM_CLOCK (ts, rate8, cmax8) do i = 1,m a(1,1) = a(1,1) + 0.1 call dgemm('n','n',n, n, n, dble(1.0), a, n, b, n, dble(0.0), c, n) enddo call SYSTEM_CLOCK (te, rate8, cmax8) call cpu_time(time_end) elapsed = real(te-ts, kind=8)/real(rate8, kind=8) PRINT *, 'Time, MATMUL: ',time_end-time_begin, elapsed , 2*m*real(n, kind=8)**3/(10**9*elapsed) end program ! http://groups.google.com/group/comp.lang.fortran/browse_thread/thread/1cba8e6ce5080197 (2) The polyhedron test compiled with -fprotect-parens -Ofast -funroll-loops -ftree-loop-linear -fomit-frame-pointer -fwhole-program -flto runs in ~6.5s. After applying the patch below, it runs in ~66s with/without the patch. Dominique --- induct.f90 2005-10-11 22:53:32.000000000 +0200 +++ induct_vmc.f90 2015-04-05 19:06:30.000000000 +0200 @@ -1644,18 +1644,17 @@ contains coil_tmp_vector(1) = -sin(theta) coil_tmp_vector(2) = cos(theta) coil_tmp_vector(3) = 0.0_longreal - coil_current_vec(1) = dot_product(rotate_coil(1,:),coil_tmp_vector(:)) - coil_current_vec(2) = dot_product(rotate_coil(2,:),coil_tmp_vector(:)) - coil_current_vec(3) = dot_product(rotate_coil(3,:),coil_tmp_vector(:)) + coil_current_vec = matmul(rotate_coil,coil_tmp_vector) ! do j = 1, 9 c_vector(3) = 0.5 * h_coil * z1gauss(j) ! ! rotate coil vector into the global coordinate system and translate it ! - rot_c_vector(1) = dot_product(rotate_coil(1,:),c_vector(:)) + dx - rot_c_vector(2) = dot_product(rotate_coil(2,:),c_vector(:)) + dy - rot_c_vector(3) = dot_product(rotate_coil(3,:),c_vector(:)) + dz + rot_c_vector = matmul(rotate_coil,c_vector) + rot_c_vector(1) = rot_c_vector(1) + dx + rot_c_vector(2) = rot_c_vector(2) + dy + rot_c_vector(3) = rot_c_vector(3) + dz ! do k = 1, 9 q_vector(1) = 0.5_longreal * a * (x2gauss(k) + 1.0_longreal) @@ -1664,9 +1663,7 @@ contains ! ! rotate quad vector into the global coordinate system ! - rot_q_vector(1) = dot_product(rotate_quad(1,:),q_vector(:)) - rot_q_vector(2) = dot_product(rotate_quad(2,:),q_vector(:)) - rot_q_vector(3) = dot_product(rotate_quad(3,:),q_vector(:)) + rot_q_vector = matmul(rotate_quad,q_vector) ! ! compute and add in quadrature term ! @@ -1756,18 +1753,17 @@ contains coil_tmp_vector(1) = -sin(theta) coil_tmp_vector(2) = cos(theta) coil_tmp_vector(3) = 0.0_longreal - coil_current_vec(1) = dot_product(rotate_coil(1,:),coil_tmp_vector(:)) - coil_current_vec(2) = dot_product(rotate_coil(2,:),coil_tmp_vector(:)) - coil_current_vec(3) = dot_product(rotate_coil(3,:),coil_tmp_vector(:)) + coil_current_vec = matmul(rotate_coil,coil_tmp_vector) ! do j = 1, 9 c_vector(3) = 0.5 * h_coil * z1gauss(j) ! ! rotate coil vector into the global coordinate system and translate it ! - rot_c_vector(1) = dot_product(rotate_coil(1,:),c_vector(:)) + dx - rot_c_vector(2) = dot_product(rotate_coil(2,:),c_vector(:)) + dy - rot_c_vector(3) = dot_product(rotate_coil(3,:),c_vector(:)) + dz + rot_c_vector = matmul(rotate_coil,c_vector) + rot_c_vector(1) = rot_c_vector(1) + dx + rot_c_vector(2) = rot_c_vector(2) + dy + rot_c_vector(3) = rot_c_vector(3) + dz ! do k = 1, 9 q_vector(1) = 0.5_longreal * a * (x2gauss(k) + 1.0_longreal) @@ -1776,9 +1772,7 @@ contains ! ! rotate quad vector into the global coordinate system ! - rot_q_vector(1) = dot_product(rotate_quad(1,:),q_vector(:)) - rot_q_vector(2) = dot_product(rotate_quad(2,:),q_vector(:)) - rot_q_vector(3) = dot_product(rotate_quad(3,:),q_vector(:)) + rot_q_vector = matmul(rotate_quad,q_vector) ! ! compute and add in quadrature term ! @@ -2061,18 +2055,17 @@ contains ! ! compute current vector for the coil in the global coordinate system ! - coil_current_vec(1) = dot_product(rotate_coil(1,:),coil_tmp_vector(:)) - coil_current_vec(2) = dot_product(rotate_coil(2,:),coil_tmp_vector(:)) - coil_current_vec(3) = dot_product(rotate_coil(3,:),coil_tmp_vector(:)) + coil_current_vec = matmul(rotate_coil,coil_tmp_vector) ! do j = 1, 9 c_vector(3) = 0.5 * h_coil * z1gauss(j) ! ! rotate coil vector into the global coordinate system and translate it ! - rot_c_vector(1) = dot_product(rotate_coil(1,:),c_vector(:)) + dx - rot_c_vector(2) = dot_product(rotate_coil(2,:),c_vector(:)) + dy - rot_c_vector(3) = dot_product(rotate_coil(3,:),c_vector(:)) + dz + rot_c_vector = matmul(rotate_coil,c_vector) + rot_c_vector(1) = rot_c_vector(1) + dx + rot_c_vector(2) = rot_c_vector(2) + dy + rot_c_vector(3) = rot_c_vector(3) + dz ! do k = 1, 9 q_vector(1) = 0.5_longreal * a * (x2gauss(k) + 1.0_longreal) @@ -2081,9 +2074,7 @@ contains ! ! rotate quad vector into the global coordinate system ! - rot_q_vector(1) = dot_product(rotate_quad(1,:),q_vector(:)) - rot_q_vector(2) = dot_product(rotate_quad(2,:),q_vector(:)) - rot_q_vector(3) = dot_product(rotate_quad(3,:),q_vector(:)) + rot_q_vector = matmul(rotate_quad,q_vector) ! ! compute and add in quadrature term ! @@ -2204,18 +2195,17 @@ contains ! ! compute current vector for the coil in the global coordinate system ! - coil_current_vec(1) = dot_product(rotate_coil(1,:),coil_tmp_vector(:)) - coil_current_vec(2) = dot_product(rotate_coil(2,:),coil_tmp_vector(:)) - coil_current_vec(3) = dot_product(rotate_coil(3,:),coil_tmp_vector(:)) + coil_current_vec = matmul(rotate_coil,coil_tmp_vector) ! do j = 1, 9 c_vector(3) = 0.5 * h_coil * z1gauss(j) ! ! rotate coil vector into the global coordinate system and translate it ! - rot_c_vector(1) = dot_product(rotate_coil(1,:),c_vector(:)) + dx - rot_c_vector(2) = dot_product(rotate_coil(2,:),c_vector(:)) + dy - rot_c_vector(3) = dot_product(rotate_coil(3,:),c_vector(:)) + dz + rot_c_vector = matmul(rotate_coil,c_vector) + rot_c_vector(1) = rot_c_vector(1) + dx + rot_c_vector(2) = rot_c_vector(2) + dy + rot_c_vector(3) = rot_c_vector(3) + dz ! do k = 1, 9 q_vector(1) = 0.5_longreal * a * (x2gauss(k) + 1.0_longreal) @@ -2224,9 +2214,7 @@ contains ! ! rotate quad vector into the global coordinate system ! - rot_q_vector(1) = dot_product(rotate_quad(1,:),q_vector(:)) - rot_q_vector(2) = dot_product(rotate_quad(2,:),q_vector(:)) - rot_q_vector(3) = dot_product(rotate_quad(3,:),q_vector(:)) + rot_q_vector = matmul(rotate_quad,q_vector) ! ! compute and add in quadrature term ! > Le 5 avr. 2015 à 16:33, Thomas Koenig <tkoe...@netcologne.de> a écrit : > > Hi Dominique, > >> IMO the inlining of MATMUL should be restricted to small matrices (less than >> 4x4, 9x9 >> or 16x16 depending of your field!-) > > The problem with the library function we have is that it is quite > general; it can deal with all the complexity of assumed-shape array > arguments. Inlining allows the compiler to take advantage of > contiguous memory, compile-time knowledge of array sizes, etc. > to allow for vectorization or even complete unrolling. > > Of course, if you use c=matmul(a,b) where all three are assumed-shape > arrays, your advantage over the library function will be minimal at > best. > > It will be interesting to see at what size calling BLAS directly > will be better. > > Thomas