https://gcc.gnu.org/g:44857eb8bab4114bba7d294f796b0fa57c42a85a

commit 44857eb8bab4114bba7d294f796b0fa57c42a85a
Author: Michael Meissner <meiss...@linux.ibm.com>
Date:   Mon Dec 2 15:35:57 2024 -0500

    RFC2653-Add wD constraint.
    
    This patch adds a new constraint ('wD') that matches the accumulator 
registers
    that overlap with VSX registers 0..31 on power10.  Future patches will add 
the
    support for a separate accumulator register class that will be used when the
    support for dense math registes is added.
    
    2024-12-02   Michael Meissner  <meiss...@linux.ibm.com>
    
            * config/rs6000/constraints.md (wD): New constraint.
            * config/rs6000/mma.md (mma_<acc>): Prepare for alternate 
accumulator
            registers.  Use wD constraint instead of 'd' constraint.  Use
            accumulator_operand instead of fpr_reg_operand.
            (mma_<vv>): Likewise.
            (mma_<avv>): Likewise.
            (mma_<pv>): Likewise.
            (mma_<apv>): Likewise.
            (mma_<vvi4i4i8>): Likewise.
            (mma_<avvi4i4i8>): Likewise.
            (mma_<vvi4i4i2>): Likewise.
            (mma_<avvi4i4i2>): Likewise.
            (mma_<vvi4i4>): Likewise.
            (mma_<avvi4i4>): Likewise.
            (mma_<pvi4i2): Likewise.
            (mma_<apvi4i2>): Likewise.
            (mma_<vvi4i4i4>): Likewise.
            (mma_<avvi4i4i4): Likewise.
            * config/rs6000/predicates.md (accumulator_operand): New predicate.
            * config/rs6000/rs6000.cc (rs6000_debug_reg_global): Print the 
register
            class for the 'wD' constraint.
            (rs6000_init_hard_regno_mode_ok): Set up the 'wD' register 
constraint
            class.
            * config/rs6000/rs6000.h (enum r6000_reg_class_enum): Add element 
for
            the 'wD' constraint.
            * doc/md.texi (PowerPC constraints): Document the 'wD' constraint.

Diff:
---
 gcc/config/rs6000/mma.md            |  74 ++++++++++--
 gcc/config/rs6000/predicates.md     |  21 +++-
 gcc/config/rs6000/rs6000-builtin.cc |   5 +-
 gcc/config/rs6000/rs6000-c.cc       |   9 +-
 gcc/config/rs6000/rs6000.cc         | 220 +++++++++++++++++++++++++++++-------
 gcc/config/rs6000/rs6000.h          |  43 ++++++-
 gcc/config/rs6000/rs6000.md         |   2 +
 7 files changed, 311 insertions(+), 63 deletions(-)

diff --git a/gcc/config/rs6000/mma.md b/gcc/config/rs6000/mma.md
index e051239df57b..ae6e7e9695be 100644
--- a/gcc/config/rs6000/mma.md
+++ b/gcc/config/rs6000/mma.md
@@ -91,6 +91,7 @@
    UNSPEC_MMA_XVI8GER4SPP
    UNSPEC_MMA_XXMFACC
    UNSPEC_MMA_XXMTACC
+   UNSPEC_MMA_DMSETDMRZ
   ])
 
 (define_c_enum "unspecv"
@@ -314,7 +315,9 @@
    (set_attr "length" "*,*,8")])
 
 
-;; Vector quad support.  XOmode can only live in FPRs.
+;; Vector quad support.  Under the original MMA, XOmode can only live in VSX
+;; registers 0..31.  With dense math, XOmode can live in either VSX registers
+;; (0..63) or DMR registers.
 (define_expand "movxo"
   [(set (match_operand:XO 0 "nonimmediate_operand")
        (match_operand:XO 1 "input_operand"))]
@@ -339,10 +342,10 @@
     gcc_assert (false);
 })
 
-(define_insn_and_split "*movxo"
+(define_insn_and_split "*movxo_nodm"
   [(set (match_operand:XO 0 "nonimmediate_operand" "=d,ZwO,d")
        (match_operand:XO 1 "input_operand" "ZwO,d,d"))]
-  "TARGET_MMA
+  "TARGET_MMA_NO_DENSE_MATH
    && (gpc_reg_operand (operands[0], XOmode)
        || gpc_reg_operand (operands[1], XOmode))"
   "@
@@ -359,6 +362,31 @@
    (set_attr "length" "*,*,16")
    (set_attr "max_prefixed_insns" "2,2,*")])
 
+(define_insn_and_split "*movxo_dm"
+  [(set (match_operand:XO 0 "nonimmediate_operand" "=wa,ZwO,wa,wD,wD,wa")
+       (match_operand:XO 1 "input_operand"        "ZwO,wa, wa,wa,wD,wD"))]
+  "TARGET_MMA_DENSE_MATH
+   && (gpc_reg_operand (operands[0], XOmode)
+       || gpc_reg_operand (operands[1], XOmode))"
+  "@
+   #
+   #
+   #
+   dmxxinstdmr512 %0,%1,%Y1,0
+   dmmr %0,%1
+   dmxxextfdmr512 %0,%Y0,%1,0"
+  "&& reload_completed
+   && !dmr_operand (operands[0], XOmode)
+   && !dmr_operand (operands[1], XOmode)"
+  [(const_int 0)]
+{
+  rs6000_split_multireg_move (operands[0], operands[1]);
+  DONE;
+}
+  [(set_attr "type" "vecload,vecstore,veclogical,mma,mma,mma")
+   (set_attr "length" "*,*,16,*,*,*")
+   (set_attr "max_prefixed_insns" "2,2,*,*,*,*")])
+
 (define_expand "vsx_assemble_pair"
   [(match_operand:OO 0 "vsx_register_operand")
    (match_operand:V16QI 1 "mma_assemble_input_operand")
@@ -499,29 +527,53 @@
   DONE;
 })
 
-;; MMA instructions that do not use their accumulators as an input, still
-;; must not allow their vector operands to overlap the registers used by
-;; the accumulator.  We enforce this by marking the output as early clobber.
+;; MMA instructions that do not use their accumulators as an input, still must
+;; not allow their vector operands to overlap the registers used by the
+;; accumulator.  We enforce this by marking the output as early clobber.  The
+;; prime and de-prime instructions are not needed on systems with dense math
+;; registers.
 
 (define_insn "mma_<acc>"
   [(set (match_operand:XO 0 "accumulator_operand" "=&wD")
-       (unspec:XO [(match_operand:XO 1 "accumulator_operand" "0")]
+       (unspec:XO [(match_operand:XO 1 "fpr_reg_operand" "0")]
                    MMA_ACC))]
-  "TARGET_MMA"
+  "TARGET_MMA_NO_DENSE_MATH"
   "<acc> %A0"
   [(set_attr "type" "mma")])
 
 ;; We can't have integer constants in XOmode so we wrap this in an
-;; UNSPEC_VOLATILE.
+;; UNSPEC_VOLATILE.  If we have dense math registers, we can just use a normal
+;; UNSPEC instead of UNSPEC_VOLATILE.
 
-(define_insn "mma_xxsetaccz"
-  [(set (match_operand:XO 0 "fpr_reg_operand" "=d")
+(define_expand "mma_xxsetaccz"
+  [(set (match_operand:XO 0 "accumulator_operand")
        (unspec_volatile:XO [(const_int 0)]
                            UNSPECV_MMA_XXSETACCZ))]
   "TARGET_MMA"
+{
+  if (TARGET_DENSE_MATH)
+    {
+      emit_insn (gen_mma_dmsetdmrz (operands[0]));
+      DONE;
+    }
+})
+
+(define_insn "*mma_xxsetaccz"
+  [(set (match_operand:XO 0 "fpr_reg_operand" "=d")
+       (unspec_volatile:XO [(const_int 0)]
+                           UNSPECV_MMA_XXSETACCZ))]
+  "TARGET_MMA_NO_DENSE_MATH"
   "xxsetaccz %A0"
   [(set_attr "type" "mma")])
 
+(define_insn "mma_dmsetdmrz"
+  [(set (match_operand:XO 0 "accumulator_operand" "=wD")
+       (unspec [(const_int 0)]
+               UNSPEC_MMA_DMSETDMRZ))]
+  "TARGET_MMA_DENSE_MATH"
+  "dmsetdmrz %A0"
+  [(set_attr "type" "mma")])
+
 (define_insn "mma_<vv>"
   [(set (match_operand:XO 0 "accumulator_operand" "=&wD,&wD")
        (unspec:XO [(match_operand:V16QI 1 "vsx_register_operand" "v,?wa")
diff --git a/gcc/config/rs6000/predicates.md b/gcc/config/rs6000/predicates.md
index 1827647b7c1e..2797c3cf619b 100644
--- a/gcc/config/rs6000/predicates.md
+++ b/gcc/config/rs6000/predicates.md
@@ -186,8 +186,23 @@
   return VLOGICAL_REGNO_P (REGNO (op));
 })
 
+;; Return 1 if op is a DMR register
+(define_predicate "dmr_operand"
+  (match_operand 0 "register_operand")
+{
+  if (!REG_P (op))
+    return 0;
+
+  if (!HARD_REGISTER_P (op))
+    return 1;
+
+  return DMR_REGNO_P (REGNO (op));
+})
+
 ;; Return 1 if op is an accumulator.  On power10 systems, the accumulators
-;; overlap with the FPRs.
+;; overlap with the FPRs, while on systems with dense math, the accumulators
+;; are separate dense math registers and do not overlap with the FPR
+;; registers..
 (define_predicate "accumulator_operand"
   (match_operand 0 "register_operand")
 {
@@ -198,7 +213,9 @@
     return 1;
 
   int r = REGNO (op);
-  return FP_REGNO_P (r) && (r & 3) == 0;
+  return (TARGET_MMA_DENSE_MATH
+         ? DMR_REGNO_P (r)
+         : FP_REGNO_P (r) && (r & 3) == 0);
 })
 
 ;; Return 1 if op is the carry register.
diff --git a/gcc/config/rs6000/rs6000-builtin.cc 
b/gcc/config/rs6000/rs6000-builtin.cc
index b6093b3cb64c..f2063edd2c39 100644
--- a/gcc/config/rs6000/rs6000-builtin.cc
+++ b/gcc/config/rs6000/rs6000-builtin.cc
@@ -1125,8 +1125,9 @@ rs6000_gimple_fold_mma_builtin (gimple_stmt_iterator *gsi,
        }
 
       /* If we're disassembling an accumulator into a different type, we need
-        to emit a xxmfacc instruction now, since we cannot do it later.  */
-      if (fncode == RS6000_BIF_DISASSEMBLE_ACC)
+        to emit a xxmfacc instruction now, since we cannot do it later.  If we
+        have dense math registers, we don't need to do this.  */
+      if (fncode == RS6000_BIF_DISASSEMBLE_ACC && !TARGET_DENSE_MATH)
        {
          new_decl = rs6000_builtin_decls[RS6000_BIF_XXMFACC_INTERNAL];
          new_call = gimple_build_call (new_decl, 1, src);
diff --git a/gcc/config/rs6000/rs6000-c.cc b/gcc/config/rs6000/rs6000-c.cc
index 6863e34fa705..cb832e1faf81 100644
--- a/gcc/config/rs6000/rs6000-c.cc
+++ b/gcc/config/rs6000/rs6000-c.cc
@@ -590,9 +590,14 @@ rs6000_target_modify_macros (bool define_p, HOST_WIDE_INT 
flags,
   if (rs6000_cpu == PROCESSOR_CELL)
     rs6000_define_or_undefine_macro (define_p, "__PPU__");
 
-  /* Tell the user if we support the MMA instructions.  */
+  /* Tell the user if we support the MMA instructions.  Also tell them if MMA
+     uses the dense math registers.  */
   if ((flags & OPTION_MASK_MMA) != 0)
-    rs6000_define_or_undefine_macro (define_p, "__MMA__");
+    {
+      rs6000_define_or_undefine_macro (define_p, "__MMA__");
+      if ((arch_flags & ARCH_MASK_FUTURE) != 0)
+       rs6000_define_or_undefine_macro (define_p, "__DENSE_MATH__");
+    }
   /* Whether pc-relative code is being generated.  */
   if ((flags & OPTION_MASK_PCREL) != 0)
     rs6000_define_or_undefine_macro (define_p, "__PCREL__");
diff --git a/gcc/config/rs6000/rs6000.cc b/gcc/config/rs6000/rs6000.cc
index 3047a9e9a9b0..b1c2c231e427 100644
--- a/gcc/config/rs6000/rs6000.cc
+++ b/gcc/config/rs6000/rs6000.cc
@@ -292,7 +292,8 @@ enum rs6000_reg_type {
   ALTIVEC_REG_TYPE,
   FPR_REG_TYPE,
   SPR_REG_TYPE,
-  CR_REG_TYPE
+  CR_REG_TYPE,
+  DMR_REG_TYPE
 };
 
 /* Map register class to register type.  */
@@ -306,22 +307,23 @@ static enum rs6000_reg_type 
reg_class_to_reg_type[N_REG_CLASSES];
 
 
 /* Register classes we care about in secondary reload or go if legitimate
-   address.  We only need to worry about GPR, FPR, and Altivec registers here,
-   along an ANY field that is the OR of the 3 register classes.  */
+   address.  We only need to worry about GPR, FPR, Altivec, and DMR registers
+   here, along an ANY field that is the OR of the 4 register classes.  */
 
 enum rs6000_reload_reg_type {
   RELOAD_REG_GPR,                      /* General purpose registers.  */
   RELOAD_REG_FPR,                      /* Traditional floating point regs.  */
   RELOAD_REG_VMX,                      /* Altivec (VMX) registers.  */
-  RELOAD_REG_ANY,                      /* OR of GPR, FPR, Altivec masks.  */
+  RELOAD_REG_DMR,                      /* DMR registers.  */
+  RELOAD_REG_ANY,                      /* OR of GPR/FPR/VMX/DMR masks.  */
   N_RELOAD_REG
 };
 
-/* For setting up register classes, loop through the 3 register classes mapping
+/* For setting up register classes, loop through the 4 register classes mapping
    into real registers, and skip the ANY class, which is just an OR of the
    bits.  */
 #define FIRST_RELOAD_REG_CLASS RELOAD_REG_GPR
-#define LAST_RELOAD_REG_CLASS  RELOAD_REG_VMX
+#define LAST_RELOAD_REG_CLASS  RELOAD_REG_DMR
 
 /* Map reload register type to a register in the register class.  */
 struct reload_reg_map_type {
@@ -333,6 +335,7 @@ static const struct reload_reg_map_type 
reload_reg_map[N_RELOAD_REG] = {
   { "Gpr",     FIRST_GPR_REGNO },      /* RELOAD_REG_GPR.  */
   { "Fpr",     FIRST_FPR_REGNO },      /* RELOAD_REG_FPR.  */
   { "VMX",     FIRST_ALTIVEC_REGNO },  /* RELOAD_REG_VMX.  */
+  { "DMR",     FIRST_DMR_REGNO },      /* RELOAD_REG_DMR.  */
   { "Any",     -1 },                   /* RELOAD_REG_ANY.  */
 };
 
@@ -1226,6 +1229,8 @@ char rs6000_reg_names[][8] =
       "0",  "1",  "2",  "3",  "4",  "5",  "6",  "7",
   /* vrsave vscr sfp */
       "vrsave", "vscr", "sfp",
+  /* DMRs */
+      "0", "1", "2", "3", "4", "5", "6", "7",
 };
 
 #ifdef TARGET_REGNAMES
@@ -1252,6 +1257,8 @@ static const char alt_reg_names[][8] =
   "%cr0",  "%cr1", "%cr2", "%cr3", "%cr4", "%cr5", "%cr6", "%cr7",
   /* vrsave vscr sfp */
   "vrsave", "vscr", "sfp",
+  /* DMRs */
+  "%dmr0", "%dmr1", "%dmr2", "%dmr3", "%dmr4", "%dmr5", "%dmr6", "%dmr7",
 };
 #endif
 
@@ -1926,6 +1933,9 @@ rs6000_hard_regno_nregs_internal (int regno, machine_mode 
mode)
   else if (ALTIVEC_REGNO_P (regno))
     reg_size = UNITS_PER_ALTIVEC_WORD;
 
+  else if (DMR_REGNO_P (regno))
+    reg_size = UNITS_PER_DMR_WORD;
+
   else
     reg_size = UNITS_PER_WORD;
 
@@ -1947,9 +1957,35 @@ rs6000_hard_regno_mode_ok_uncached (int regno, 
machine_mode mode)
   if (mode == OOmode)
     return (TARGET_MMA && VSX_REGNO_P (regno) && (regno & 1) == 0);
 
-  /* MMA accumulator modes need FPR registers divisible by 4.  */
+  /* On ISA 3.1 (power10), MMA accumulator modes need FPR registers divisible
+     by 4.
+
+     If dense math registers are enabled, we can allow all VSX registers plus
+     the DMR registers.  VSX registers are used to load and store the registers
+     as the accumulator registers do not have load and store instructions.
+     Because we just use the VSX registers for load/store operations, we just
+     need to make sure load vector pair and store vector pair instructions can
+     be used.  */
   if (mode == XOmode)
-    return (TARGET_MMA && FP_REGNO_P (regno) && (regno & 3) == 0);
+    {
+      if (!TARGET_MMA)
+       return 0;
+
+      else if (!TARGET_DENSE_MATH)
+       return (FP_REGNO_P (regno) && (regno & 3) == 0);
+
+      else if (DMR_REGNO_P (regno))
+       return 1;
+
+      else
+       return (VSX_REGNO_P (regno)
+               && VSX_REGNO_P (last_regno)
+               && (regno & 1) == 0);
+    }
+
+  /* No other types other than XOmode can go in DMRs.  */
+  if (DMR_REGNO_P (regno))
+    return 0;
 
   /* PTImode can only go in GPRs.  Quad word memory operations require even/odd
      register combinations, and use PTImode where we need to deal with quad
@@ -2392,6 +2428,7 @@ rs6000_debug_reg_global (void)
   rs6000_debug_reg_print (FIRST_ALTIVEC_REGNO,
                          LAST_ALTIVEC_REGNO,
                          "vs");
+  rs6000_debug_reg_print (FIRST_DMR_REGNO, LAST_DMR_REGNO, "dmr");
   rs6000_debug_reg_print (LR_REGNO, LR_REGNO, "lr");
   rs6000_debug_reg_print (CTR_REGNO, CTR_REGNO, "ctr");
   rs6000_debug_reg_print (CR0_REGNO, CR7_REGNO, "cr");
@@ -2724,6 +2761,21 @@ rs6000_setup_reg_addr_masks (void)
          addr_mask = 0;
          reg = reload_reg_map[rc].reg;
 
+         /* Special case DMR registers.  */
+         if (rc == RELOAD_REG_DMR)
+           {
+             if (TARGET_DENSE_MATH && m2 == XOmode)
+               {
+                 addr_mask = RELOAD_REG_VALID;
+                 reg_addr[m].addr_mask[rc] = addr_mask;
+                 any_addr_mask |= addr_mask;
+               }
+             else
+               reg_addr[m].addr_mask[rc] = 0;
+
+             continue;
+           }
+
          /* Can mode values go in the GPR/FPR/Altivec registers?  */
          if (reg >= 0 && rs6000_hard_regno_mode_ok_p[m][reg])
            {
@@ -2874,6 +2926,9 @@ rs6000_init_hard_regno_mode_ok (bool global_init_p)
   for (r = CR1_REGNO; r <= CR7_REGNO; ++r)
     rs6000_regno_regclass[r] = CR_REGS;
 
+  for (r = FIRST_DMR_REGNO; r <= LAST_DMR_REGNO; ++r)
+    rs6000_regno_regclass[r] = DM_REGS;
+
   rs6000_regno_regclass[LR_REGNO] = LINK_REGS;
   rs6000_regno_regclass[CTR_REGNO] = CTR_REGS;
   rs6000_regno_regclass[CA_REGNO] = NO_REGS;
@@ -2898,6 +2953,7 @@ rs6000_init_hard_regno_mode_ok (bool global_init_p)
   reg_class_to_reg_type[(int)LINK_OR_CTR_REGS] = SPR_REG_TYPE;
   reg_class_to_reg_type[(int)CR_REGS] = CR_REG_TYPE;
   reg_class_to_reg_type[(int)CR0_REGS] = CR_REG_TYPE;
+  reg_class_to_reg_type[(int)DM_REGS] = DMR_REG_TYPE;
 
   if (TARGET_VSX)
     {
@@ -3084,8 +3140,11 @@ rs6000_init_hard_regno_mode_ok (bool global_init_p)
   if (TARGET_DIRECT_MOVE_128)
     rs6000_constraints[RS6000_CONSTRAINT_we] = VSX_REGS;
 
+  /* Support for the accumulator registers, either FPR registers (aka original
+     mma) or DMR registers (dense math).  */
   if (TARGET_MMA)
-    rs6000_constraints[RS6000_CONSTRAINT_wD] = FLOAT_REGS;
+    rs6000_constraints[RS6000_CONSTRAINT_wD]
+      = TARGET_DENSE_MATH ? DM_REGS : FLOAT_REGS;
 
   /* Set up the reload helper and direct move functions.  */
   if (TARGET_VSX || TARGET_ALTIVEC)
@@ -12450,6 +12509,11 @@ rs6000_secondary_reload_memory (rtx addr,
     addr_mask = (reg_addr[mode].addr_mask[RELOAD_REG_VMX]
                 & ~RELOAD_REG_AND_M16);
 
+  /* DMR registers use VSX registers for memory operations, and need to
+     generate some extra instructions.  */
+  else if (rclass == DM_REGS)
+    return 2;
+
   /* If the register allocator hasn't made up its mind yet on the register
      class to use, settle on defaults to use.  */
   else if (rclass == NO_REGS)
@@ -12778,6 +12842,13 @@ rs6000_secondary_reload_simple_move (enum 
rs6000_reg_type to_type,
               || (to_type == SPR_REG_TYPE && from_type == GPR_REG_TYPE)))
     return true;
 
+  /* We can transfer between VSX registers and DMR registers without needing
+     extra registers.  */
+  if (TARGET_DENSE_MATH && mode == XOmode
+      && ((to_type == DMR_REG_TYPE && from_type == VSX_REG_TYPE)
+         || (to_type == VSX_REG_TYPE && from_type == DMR_REG_TYPE)))
+    return true;
+
   return false;
 }
 
@@ -13472,6 +13543,10 @@ rs6000_preferred_reload_class (rtx x, enum reg_class 
rclass)
   machine_mode mode = GET_MODE (x);
   bool is_constant = CONSTANT_P (x);
 
+  /* DMR registers can't be loaded or stored.  */
+  if (rclass == DM_REGS)
+    return NO_REGS;
+
   /* If a mode can't go in FPR/ALTIVEC/VSX registers, don't return a preferred
      reload class for it.  */
   if ((rclass == ALTIVEC_REGS || rclass == VSX_REGS)
@@ -13568,7 +13643,7 @@ rs6000_preferred_reload_class (rtx x, enum reg_class 
rclass)
        return VSX_REGS;
 
       if (mode == XOmode)
-       return FLOAT_REGS;
+       return TARGET_MMA_DENSE_MATH ? VSX_REGS : FLOAT_REGS;
 
       if (GET_MODE_CLASS (mode) == MODE_INT)
        return GENERAL_REGS;
@@ -13693,6 +13768,11 @@ rs6000_secondary_reload_class (enum reg_class rclass, 
machine_mode mode,
   else
     regno = -1;
 
+  /* DMR registers don't have loads or stores.  We have to go through the VSX
+     registers to load XOmode (vector quad).  */
+  if (TARGET_MMA_DENSE_MATH && rclass == DM_REGS)
+    return VSX_REGS;
+
   /* If we have VSX register moves, prefer moving scalar values between
      Altivec registers and GPR by going via an FPR (and then via memory)
      instead of reloading the secondary memory address for Altivec moves.  */
@@ -14224,8 +14304,19 @@ print_operand (FILE *file, rtx x, int code)
         output_operand.  */
 
     case 'A':
-      /* Write the MMA accumulator number associated with VSX register X.  */
-      if (!REG_P (x) || !FP_REGNO_P (REGNO (x)) || (REGNO (x) % 4) != 0)
+      /* Write the MMA accumulator number associated with VSX register X.  On
+        dense math systems, only allow DMR accumulators, not accumulators
+        overlapping with the FPR registers.  */
+      if (!REG_P (x))
+       output_operand_lossage ("invalid %%A value");
+      else if (TARGET_MMA_DENSE_MATH)
+       {
+         if (DMR_REGNO_P (REGNO (x)))
+           fprintf (file, "%d", REGNO (x) - FIRST_DMR_REGNO);
+         else
+           output_operand_lossage ("%%A operand is not a DMR");
+       }
+      else if (!FP_REGNO_P (REGNO (x)) || (REGNO (x) % 4) != 0)
        output_operand_lossage ("invalid %%A value");
       else
        fprintf (file, "%d", (REGNO (x) - FIRST_FPR_REGNO) / 4);
@@ -22826,6 +22917,31 @@ rs6000_debug_address_cost (rtx x, machine_mode mode,
 }
 
 
+/* Subroutine to determine the move cost of dense math registers.  If we are
+   moving to/from VSX_REGISTER registers, the cost is either 1 move (for
+   512-bit accumulators) or 2 moves (for 1,024 dmr registers).  If we are
+   moving to anything else like GPR registers, make the cost very high.  */
+
+static int
+rs6000_dmr_register_move_cost (machine_mode mode, reg_class_t rclass)
+{
+  const int reg_move_base = 2;
+  HARD_REG_SET vsx_set = (reg_class_contents[rclass]
+                         & reg_class_contents[VSX_REGS]);
+
+  if (TARGET_MMA_DENSE_MATH && !hard_reg_set_empty_p (vsx_set))
+    {
+      /* __vector_quad (i.e. XOmode) is tranfered in 1 instruction.  */
+      if (mode == XOmode)
+       return reg_move_base;
+
+      else
+       return reg_move_base * 2 * hard_regno_nregs (FIRST_DMR_REGNO, mode);
+    }
+
+  return 1000 * 2 * hard_regno_nregs (FIRST_DMR_REGNO, mode);
+}
+
 /* A C expression returning the cost of moving data from a register of class
    CLASS1 to one of CLASS2.  */
 
@@ -22839,17 +22955,28 @@ rs6000_register_move_cost (machine_mode mode,
   if (TARGET_DEBUG_COST)
     dbg_cost_ctrl++;
 
+  HARD_REG_SET to_vsx, from_vsx;
+  to_vsx = reg_class_contents[to] & reg_class_contents[VSX_REGS];
+  from_vsx = reg_class_contents[from] & reg_class_contents[VSX_REGS];
+
+  /* Special case DMR registers, that can only move to/from VSX registers.  */
+  if (from == DM_REGS && to == DM_REGS)
+    ret = 2 * hard_regno_nregs (FIRST_DMR_REGNO, mode);
+
+  else if (from == DM_REGS)
+    ret = rs6000_dmr_register_move_cost (mode, to);
+
+  else if (to == DM_REGS)
+    ret = rs6000_dmr_register_move_cost (mode, from);
+
   /* If we have VSX, we can easily move between FPR or Altivec registers,
      otherwise we can only easily move within classes.
      Do this first so we give best-case answers for union classes
      containing both gprs and vsx regs.  */
-  HARD_REG_SET to_vsx, from_vsx;
-  to_vsx = reg_class_contents[to] & reg_class_contents[VSX_REGS];
-  from_vsx = reg_class_contents[from] & reg_class_contents[VSX_REGS];
-  if (!hard_reg_set_empty_p (to_vsx)
-      && !hard_reg_set_empty_p (from_vsx)
-      && (TARGET_VSX
-         || hard_reg_set_intersect_p (to_vsx, from_vsx)))
+  else if (!hard_reg_set_empty_p (to_vsx)
+          && !hard_reg_set_empty_p (from_vsx)
+          && (TARGET_VSX
+              || hard_reg_set_intersect_p (to_vsx, from_vsx)))
     {
       int reg = FIRST_FPR_REGNO;
       if (TARGET_VSX
@@ -22946,6 +23073,9 @@ rs6000_memory_move_cost (machine_mode mode, reg_class_t 
rclass,
     ret = 4 * hard_regno_nregs (32, mode);
   else if (reg_classes_intersect_p (rclass, ALTIVEC_REGS))
     ret = 4 * hard_regno_nregs (FIRST_ALTIVEC_REGNO, mode);
+  else if (reg_classes_intersect_p (rclass, DM_REGS))
+    ret = (rs6000_dmr_register_move_cost (mode, VSX_REGS)
+          + rs6000_memory_move_cost (mode, VSX_REGS, false));
   else
     ret = 4 + rs6000_register_move_cost (mode, rclass, GENERAL_REGS);
 
@@ -24154,6 +24284,8 @@ rs6000_compute_pressure_classes (enum reg_class 
*pressure_classes)
       if (TARGET_HARD_FLOAT)
        pressure_classes[n++] = FLOAT_REGS;
     }
+  if (TARGET_MMA_DENSE_MATH)
+    pressure_classes[n++] = DM_REGS;
   pressure_classes[n++] = CR_REGS;
   pressure_classes[n++] = SPECIAL_REGS;
 
@@ -24318,6 +24450,10 @@ rs6000_debugger_regno (unsigned int regno, unsigned 
int format)
     return 67;
   if (regno == 64)
     return 64;
+  /* XXX: This is a guess.  The GCC register number for FIRST_DMR_REGNO is 111,
+     but the frame pointer regnum uses that.  */
+  if (DMR_REGNO_P (regno))
+    return regno - FIRST_DMR_REGNO + 112;
 
   gcc_unreachable ();
 }
@@ -27632,9 +27768,9 @@ rs6000_split_multireg_move (rtx dst, rtx src)
          unsigned offset = 0;
          unsigned size = GET_MODE_SIZE (reg_mode);
 
-         /* If we are reading an accumulator register, we have to
-            deprime it before we can access it.  */
-         if (TARGET_MMA
+         /* If we are reading an accumulator register, we have to deprime it
+            before we can access it unless we have dense math registers.  */
+         if (TARGET_MMA_NO_DENSE_MATH
              && GET_MODE (src) == XOmode && FP_REGNO_P (REGNO (src)))
            emit_insn (gen_mma_xxmfacc (src, src));
 
@@ -27666,9 +27802,9 @@ rs6000_split_multireg_move (rtx dst, rtx src)
              emit_insn (gen_rtx_SET (dst2, src2));
            }
 
-         /* If we are writing an accumulator register, we have to
-            prime it after we've written it.  */
-         if (TARGET_MMA
+         /* If we are writing an accumulator register, we have to prime it
+            after we've written it unless we have dense math registers.  */
+         if (TARGET_MMA_NO_DENSE_MATH
              && GET_MODE (dst) == XOmode && FP_REGNO_P (REGNO (dst)))
            emit_insn (gen_mma_xxmtacc (dst, dst));
 
@@ -27682,7 +27818,9 @@ rs6000_split_multireg_move (rtx dst, rtx src)
                      || XINT (src, 1) == UNSPECV_MMA_ASSEMBLE);
          gcc_assert (REG_P (dst));
          if (GET_MODE (src) == XOmode)
-           gcc_assert (FP_REGNO_P (REGNO (dst)));
+           gcc_assert ((TARGET_MMA_DENSE_MATH
+                        ? VSX_REGNO_P (REGNO (dst))
+                        : FP_REGNO_P (REGNO (dst))));
          if (GET_MODE (src) == OOmode)
            gcc_assert (VSX_REGNO_P (REGNO (dst)));
 
@@ -27735,9 +27873,9 @@ rs6000_split_multireg_move (rtx dst, rtx src)
              emit_insn (gen_rtx_SET (dst_i, op));
            }
 
-         /* We are writing an accumulator register, so we have to
-            prime it after we've written it.  */
-         if (GET_MODE (src) == XOmode)
+         /* We are writing an accumulator register, so we have to prime it
+            after we've written it unless we have dense math registers.  */
+         if (GET_MODE (src) == XOmode && !TARGET_DENSE_MATH)
            emit_insn (gen_mma_xxmtacc (dst, dst));
 
          return;
@@ -27748,9 +27886,9 @@ rs6000_split_multireg_move (rtx dst, rtx src)
 
   if (REG_P (src) && REG_P (dst) && (REGNO (src) < REGNO (dst)))
     {
-      /* If we are reading an accumulator register, we have to
-        deprime it before we can access it.  */
-      if (TARGET_MMA
+      /* If we are reading an accumulator register, we have to deprime it
+        before we can access it unless we have dense math registers.  */
+      if (TARGET_MMA_NO_DENSE_MATH
          && GET_MODE (src) == XOmode && FP_REGNO_P (REGNO (src)))
        emit_insn (gen_mma_xxmfacc (src, src));
 
@@ -27776,9 +27914,9 @@ rs6000_split_multireg_move (rtx dst, rtx src)
                                                         i * reg_mode_size)));
        }
 
-      /* If we are writing an accumulator register, we have to
-        prime it after we've written it.  */
-      if (TARGET_MMA
+      /* If we are writing an accumulator register, we have to prime it after
+        we've written it unless we have dense math registers.  */
+      if (TARGET_MMA_NO_DENSE_MATH
          && GET_MODE (dst) == XOmode && FP_REGNO_P (REGNO (dst)))
        emit_insn (gen_mma_xxmtacc (dst, dst));
     }
@@ -27913,9 +28051,9 @@ rs6000_split_multireg_move (rtx dst, rtx src)
            gcc_assert (rs6000_offsettable_memref_p (dst, reg_mode, true));
        }
 
-      /* If we are reading an accumulator register, we have to
-        deprime it before we can access it.  */
-      if (TARGET_MMA && REG_P (src)
+      /* If we are reading an accumulator register, we have to deprime it
+        before we can access it unless we have dense math registers.  */
+      if (TARGET_MMA_NO_DENSE_MATH && REG_P (src)
          && GET_MODE (src) == XOmode && FP_REGNO_P (REGNO (src)))
        emit_insn (gen_mma_xxmfacc (src, src));
 
@@ -27945,9 +28083,9 @@ rs6000_split_multireg_move (rtx dst, rtx src)
                                                         j * reg_mode_size)));
        }
 
-      /* If we are writing an accumulator register, we have to
-        prime it after we've written it.  */
-      if (TARGET_MMA && REG_P (dst)
+      /* If we are writing an accumulator register, we have to prime it after
+        we've written it unless we have dense math registers.  */
+      if (TARGET_MMA_NO_DENSE_MATH && REG_P (dst)
          && GET_MODE (dst) == XOmode && FP_REGNO_P (REGNO (dst)))
        emit_insn (gen_mma_xxmtacc (dst, dst));
 
diff --git a/gcc/config/rs6000/rs6000.h b/gcc/config/rs6000/rs6000.h
index 69519851326e..f01136ae6922 100644
--- a/gcc/config/rs6000/rs6000.h
+++ b/gcc/config/rs6000/rs6000.h
@@ -570,6 +570,12 @@ extern int rs6000_vector_align[];
 #define TARGET_DIRECT_MOVE_64BIT       (TARGET_DIRECT_MOVE             \
                                         && TARGET_POWERPC64)
 
+/* Whether we have dense math support.  At present, we don't have a dense math
+   ISA bit, just use the future bit set by -mcpu=future.  */
+#define TARGET_DENSE_MATH              TARGET_FUTURE
+#define TARGET_MMA_DENSE_MATH          (TARGET_MMA && TARGET_DENSE_MATH)
+#define TARGET_MMA_NO_DENSE_MATH       (TARGET_MMA && !TARGET_DENSE_MATH)
+
 /* Inlining allows targets to define the meanings of bits in target_info
    field of ipa_fn_summary by itself, the used bits for rs6000 are listed
    below.  */
@@ -667,6 +673,7 @@ extern unsigned char rs6000_recip_bits[];
 #define UNITS_PER_FP_WORD 8
 #define UNITS_PER_ALTIVEC_WORD 16
 #define UNITS_PER_VSX_WORD 16
+#define UNITS_PER_DMR_WORD 128
 
 /* Type used for ptrdiff_t, as a string used in a declaration.  */
 #define PTRDIFF_TYPE "int"
@@ -780,7 +787,7 @@ enum data_align { align_abi, align_opt, align_both };
    Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
    pointer, which is eventually eliminated in favor of SP or FP.  */
 
-#define FIRST_PSEUDO_REGISTER 111
+#define FIRST_PSEUDO_REGISTER 119
 
 /* Use standard DWARF numbering for DWARF debugging information.  */
 #define DEBUGGER_REGNO(REGNO) rs6000_debugger_regno ((REGNO), 0)
@@ -817,7 +824,9 @@ enum data_align { align_abi, align_opt, align_both };
    /* cr0..cr7 */                                 \
    0, 0, 0, 0, 0, 0, 0, 0,                        \
    /* vrsave vscr sfp */                          \
-   1, 1, 1                                        \
+   1, 1, 1,                                       \
+   /* DMR registers.  */                          \
+   0, 0, 0, 0, 0, 0, 0, 0                         \
 }
 
 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
@@ -841,7 +850,9 @@ enum data_align { align_abi, align_opt, align_both };
    /* cr0..cr7 */                                 \
    1, 1, 0, 0, 0, 1, 1, 1,                        \
    /* vrsave vscr sfp */                          \
-   0, 0, 0                                        \
+   0, 0, 0,                                       \
+   /* DMR registers.  */                          \
+   0, 0, 0, 0, 0, 0, 0, 0                         \
 }
 
 #define TOTAL_ALTIVEC_REGS     (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
@@ -878,6 +889,7 @@ enum data_align { align_abi, align_opt, align_both };
        v2              (not saved; incoming vector arg reg; return value)
        v19 - v14       (not saved or used for anything)
        v31 - v20       (saved; order given to save least number)
+       dmr0 - dmr7     (not saved)
        vrsave, vscr    (fixed)
        sfp             (fixed)
 */
@@ -920,6 +932,9 @@ enum data_align { align_abi, align_opt, align_both };
    66,                                                         \
    83, 82, 81, 80, 79, 78,                                     \
    95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84,             \
+   /* DMR registers.  */                                       \
+   111, 112, 113, 114, 115, 116, 117, 118,                     \
+   /* Vrsave, vscr, sfp.  */                                   \
    108, 109,                                                   \
    110                                                         \
 }
@@ -946,6 +961,9 @@ enum data_align { align_abi, align_opt, align_both };
 /* True if register is a VSX register.  */
 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
 
+/* True if register is a DMR register.  */
+#define DMR_REGNO_P(N) ((N) >= FIRST_DMR_REGNO && (N) <= LAST_DMR_REGNO)
+
 /* Alternate name for any vector register supporting floating point, no matter
    which instruction set(s) are available.  */
 #define VFLOAT_REGNO_P(N) \
@@ -1083,6 +1101,7 @@ enum reg_class
   FLOAT_REGS,
   ALTIVEC_REGS,
   VSX_REGS,
+  DM_REGS,
   VRSAVE_REGS,
   VSCR_REGS,
   GEN_OR_FLOAT_REGS,
@@ -1112,6 +1131,7 @@ enum reg_class
   "FLOAT_REGS",                                                                
\
   "ALTIVEC_REGS",                                                      \
   "VSX_REGS",                                                          \
+  "DM_REGS",                                                           \
   "VRSAVE_REGS",                                                       \
   "VSCR_REGS",                                                         \
   "GEN_OR_FLOAT_REGS",                                                 \
@@ -1146,6 +1166,8 @@ enum reg_class
   { 0x00000000, 0x00000000, 0xffffffff, 0x00000000 },                  \
   /* VSX_REGS.  */                                                     \
   { 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 },                  \
+  /* DM_REGS.  */                                                      \
+  { 0x00000000, 0x00000000, 0x00000000, 0x007f8000 },                  \
   /* VRSAVE_REGS.  */                                                  \
   { 0x00000000, 0x00000000, 0x00000000, 0x00001000 },                  \
   /* VSCR_REGS.  */                                                    \
@@ -1173,7 +1195,7 @@ enum reg_class
   /* CA_REGS.  */                                                      \
   { 0x00000000, 0x00000000, 0x00000000, 0x00000004 },                  \
   /* ALL_REGS.  */                                                     \
-  { 0xffffffff, 0xffffffff, 0xffffffff, 0x00007fff }                   \
+  { 0xffffffff, 0xffffffff, 0xffffffff, 0x007fffff }                   \
 }
 
 /* The same information, inverted:
@@ -2074,7 +2096,16 @@ extern char rs6000_reg_names[][8];       /* register 
names (0 vs. %r0).  */
   &rs6000_reg_names[108][0],   /* vrsave  */                           \
   &rs6000_reg_names[109][0],   /* vscr  */                             \
                                                                        \
-  &rs6000_reg_names[110][0]    /* sfp  */                              \
+  &rs6000_reg_names[110][0],   /* sfp  */                              \
+                                                                       \
+  &rs6000_reg_names[111][0],   /* dmr0  */                             \
+  &rs6000_reg_names[112][0],   /* dmr1  */                             \
+  &rs6000_reg_names[113][0],   /* dmr2  */                             \
+  &rs6000_reg_names[114][0],   /* dmr3  */                             \
+  &rs6000_reg_names[115][0],   /* dmr4  */                             \
+  &rs6000_reg_names[116][0],   /* dmr5  */                             \
+  &rs6000_reg_names[117][0],   /* dmr6  */                             \
+  &rs6000_reg_names[118][0],   /* dmr7  */                             \
 }
 
 /* Table of additional register names to use in user input.  */
@@ -2128,6 +2159,8 @@ extern char rs6000_reg_names[][8];        /* register 
names (0 vs. %r0).  */
   {"vs52", 84}, {"vs53", 85}, {"vs54", 86}, {"vs55", 87},      \
   {"vs56", 88}, {"vs57", 89}, {"vs58", 90}, {"vs59", 91},      \
   {"vs60", 92}, {"vs61", 93}, {"vs62", 94}, {"vs63", 95},      \
+  {"dmr0", 111}, {"dmr1", 112}, {"dmr2", 113}, {"dmr3", 114},  \
+  {"dmr4", 115}, {"dmr5", 116}, {"dmr6", 117}, {"dmr7", 118},  \
 }
 
 /* This is how to output an element of a case-vector that is relative.  */
diff --git a/gcc/config/rs6000/rs6000.md b/gcc/config/rs6000/rs6000.md
index fa3484294ca8..43101ec34dbc 100644
--- a/gcc/config/rs6000/rs6000.md
+++ b/gcc/config/rs6000/rs6000.md
@@ -51,6 +51,8 @@
    (VRSAVE_REGNO               108)
    (VSCR_REGNO                 109)
    (FRAME_POINTER_REGNUM       110)
+   (FIRST_DMR_REGNO            111)
+   (LAST_DMR_REGNO             118)
   ])
 
 ;;

Reply via email to