https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86628

--- Comment #6 from rguenther at suse dot de <rguenther at suse dot de> ---
On Mon, 23 Jul 2018, glisse at gcc dot gnu.org wrote:

> https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86628
> 
> --- Comment #5 from Marc Glisse <glisse at gcc dot gnu.org> ---
> (In reply to Richard Biener from comment #4)
> > Yeah, generally we can't associate because (x*y)*z may not overflow because
> > x == 0 but x*(y*z) may because y*z overflows.
> 
> We can do it
> 
> - in the wrapping case (I think you were considering making signed operations
> wrap starting from a late reassoc pass)

Yes.

> - when y*z gets computed anyway (if y*z is computed before x*y*z, value
> numbering could help, but otherwise, it is inconvenient, one would either have
> to let x*y*z register a trigger (not a true value) for y*z, or make several
> passes. It may be easier to walk through the uses of z when we see x*y*z with 
> a
> single-use x*y)
> 
> > I wonder if we have in general ((x*y)*z)*...)*k what it takes to prove
> > that it is valid to factor out a random pair (already computed elsewhere).
> > I suppose we have to move that factored pair innermost for the case it
> > is zero?
> 
> Or outermost for the case something else is 0? It seems hard unless you know
> that no variable is 0 or -1 and all the operations are adjacent. The good 
> thing
> is that the frequency of occurrence decreases quickly with the size of the
> pattern, so handling the case of size 3 might reap a large part of the
> benefits.

OK, so one possibility is to do this at VN elimination time when
seeing x*c match (a*b)*c and see whether {a,b}*c is available, if so
replace x*c accordingly.  This might not make the computation of x
dead though.

Generally reassoc is a global association + CSE problem of course
but reassoc is currently formulated as a local problem.

Reply via email to