r.e. is "recursively enumerable", IIRC.

On 2/2/22 13:34, Frank Wimberly wrote:
I wonder what an e. r. relation is.  Equivalence relations are reflexive by 
definition.

--
glen
Theorem 3. If f(x) is a continuous function of period 2π, then f(x,r)→f(x) as 
r→1, uniformly ∀x.


.-- .- -. - / .- -.-. - .. --- -. ..--.. / -.-. --- -. .--- ..- --. .- - .
FRIAM Applied Complexity Group listserv
Zoom Fridays 9:30a-12p Mtn UTC-6  bit.ly/virtualfriam
un/subscribe http://redfish.com/mailman/listinfo/friam_redfish.com
FRIAM-COMIC http://friam-comic.blogspot.com/
archives:
5/2017 thru present https://redfish.com/pipermail/friam_redfish.com/
1/2003 thru 6/2021  http://friam.383.s1.nabble.com/

Reply via email to