r.e. is "recursively enumerable", IIRC. On 2/2/22 13:34, Frank Wimberly wrote:
I wonder what an e. r. relation is. Equivalence relations are reflexive by definition.
-- glen Theorem 3. If f(x) is a continuous function of period 2π, then f(x,r)→f(x) as r→1, uniformly ∀x. .-- .- -. - / .- -.-. - .. --- -. ..--.. / -.-. --- -. .--- ..- --. .- - . FRIAM Applied Complexity Group listserv Zoom Fridays 9:30a-12p Mtn UTC-6 bit.ly/virtualfriam un/subscribe http://redfish.com/mailman/listinfo/friam_redfish.com FRIAM-COMIC http://friam-comic.blogspot.com/ archives: 5/2017 thru present https://redfish.com/pipermail/friam_redfish.com/ 1/2003 thru 6/2021 http://friam.383.s1.nabble.com/