On 2012/11/07 14:17, Jeff Roberson wrote:
On Wed, 7 Nov 2012, David Xu wrote:

On 2012/11/06 19:03, Attilio Rao wrote:
On 9/20/12, David Xu <davi...@freebsd.org> wrote:
On 2012/09/18 22:05, Andriy Gapon wrote:

Here is a snippet that demonstrates the issue on a supposedly fully
loaded
2-processor system:

136794   0 3670427870244462 KTRGRAPH group:"thread", id:"Xorg tid
102818",
state:"running", attributes: prio:122

136793   0 3670427870241000 KTRGRAPH group:"thread", id:"cc1plus tid
111916",
state:"yielding", attributes: prio:183, wmesg:"(null)",
lockname:"(null)"

136792   1 3670427870240829 KTRGRAPH group:"thread", id:"idle: cpu1
tid
100004",
state:"running", attributes: prio:255

136791   1 3670427870239520 KTRGRAPH group:"load", id:"CPU 1 load",
counter:0,
attributes: none

136790   1 3670427870239248 KTRGRAPH group:"thread", id:"firefox tid
113473",
state:"blocked", attributes: prio:122, wmesg:"(null)",
lockname:"unp_mtx"

136789   1 3670427870237697 KTRGRAPH group:"load", id:"CPU 0 load",
counter:2,
attributes: none

136788   1 3670427870236394 KTRGRAPH group:"thread", id:"firefox tid
113473",
point:"wokeup", attributes: linkedto:"Xorg tid 102818"

136787   1 3670427870236145 KTRGRAPH group:"thread", id:"Xorg tid
102818",
state:"runq add", attributes: prio:122, linkedto:"firefox tid 113473"

136786   1 3670427870235981 KTRGRAPH group:"load", id:"CPU 1 load",
counter:1,
attributes: none

136785   1 3670427870235707 KTRGRAPH group:"thread", id:"Xorg tid
102818",
state:"runq rem", attributes: prio:176

136784   1 3670427870235423 KTRGRAPH group:"thread", id:"Xorg tid
102818",
point:"prio", attributes: prio:176, new prio:122, linkedto:"firefox
tid
113473"

136783   1 3670427870202392 KTRGRAPH group:"thread", id:"firefox tid
113473",
state:"running", attributes: prio:104

See how how the Xorg thread was forced from CPU 1 to CPU 0 where it
preempted
cc1plus thread (I do have preemption enabled) only to leave CPU 1 with
zero load.

Here is a proposed solution:

      turnstile_wait: optimize priority lending to a thread on a
runqueue

      As the current thread is definitely going into mi_switch, it now
removes
      its load before doing priority propagation which can potentially
result
      in sched_add.  In the SMP && ULE case the latter searches for
the
      least loaded CPU to place a boosted thread, which is supposedly
about
      to run.

diff --git a/sys/kern/sched_ule.c b/sys/kern/sched_ule.c
index 8e466cd..3299cae 100644
--- a/sys/kern/sched_ule.c
+++ b/sys/kern/sched_ule.c
@@ -1878,7 +1878,10 @@ sched_switch(struct thread *td, struct thread
*newtd, int
flags)
           /* This thread must be going to sleep. */
           TDQ_LOCK(tdq);
           mtx = thread_lock_block(td);
-        tdq_load_rem(tdq, td);
+#if defined(SMP)
+        if ((flags & SW_TYPE_MASK) != SWT_TURNSTILE)
+#endif
+            tdq_load_rem(tdq, td);
       }
       /*
        * We enter here with the thread blocked and assigned to the
@@ -2412,6 +2415,21 @@ sched_rem(struct thread *td)
           tdq_setlowpri(tdq, NULL);
   }

+void
+sched_load_rem(struct thread *td)
+{
+    struct tdq *tdq;
+
+    KASSERT(td == curthread,
+        ("sched_rem_load: only curthread is supported"));
+    KASSERT(td->td_oncpu == td->td_sched->ts_cpu,
+        ("thread running on cpu different from ts_cpu"));
+    tdq = TDQ_CPU(td->td_sched->ts_cpu);
+    TDQ_LOCK_ASSERT(tdq, MA_OWNED);
+    MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
+    tdq_load_rem(tdq, td);
+}
+
   /*
    * Fetch cpu utilization information.  Updates on demand.
    */
diff --git a/sys/kern/subr_turnstile.c b/sys/kern/subr_turnstile.c
index 31d16fe..d1d68e9 100644
--- a/sys/kern/subr_turnstile.c
+++ b/sys/kern/subr_turnstile.c
@@ -731,6 +731,13 @@ turnstile_wait(struct turnstile *ts, struct
thread
*owner,
int queue)
           LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
       }
       thread_lock(td);
+#if defined(SCHED_ULE) && defined(SMP)
+    /*
+     * Remove load earlier so that it does not affect cpu selection
+     * for a thread waken up due to priority lending, if any.
+     */
+    sched_load_rem(td);
+#endif
       thread_lock_set(td, &ts->ts_lock);
       td->td_turnstile = NULL;

diff --git a/sys/sys/sched.h b/sys/sys/sched.h
index 4b8387c..b1ead1b 100644
--- a/sys/sys/sched.h
+++ b/sys/sys/sched.h
@@ -110,6 +110,9 @@ void    sched_preempt(struct thread *td);
   void    sched_add(struct thread *td, int flags);
   void    sched_clock(struct thread *td);
   void    sched_rem(struct thread *td);
+#if defined(SCHED_ULE) && defined(SMP)
+void    sched_load_rem(struct thread *td);
+#endif
   void    sched_tick(int cnt);
   void    sched_relinquish(struct thread *td);
   struct thread *sched_choose(void);


I found another scenario in taskqueue, in the function
taskqueue_terminate, current thread tries to wake
another thread up and sleep immediately, the tq_mutex sometimes
is a spinlock. So if you remove one thread load from current cpu
before wakeup, the resumed thread may be put on same cpu,
so it will optimize the cpu scheduling too.

I think that in order to fit with sched_add() modifies I have in mind
(see other patches within this thread) wakeup() should grow a new
argument, or maybe we can use wakeup_flags() new KPI.
If the latter is the case, I would also propose to let wakeup_one() to
be absorbed into wakeup_flags() with its own flag.


Yes, I like the idea.

From ~2007

http://people.freebsd.org/~jeff/wakeupflags.diff

This has some different optimizations that can be done when you have a
hinted wakeup.


wakeup_flags is a good start point.
But what flags should be supported? I think WAKEUP_WILLSLEEP may be
needed if the current thread will switch out as soon as possible.

I see you have added WAKEUP_LOCAL and WAKEUP_TAIL. Are they for cache
optimization ? both of them are arguable.

WAKEUP_LOCAL increases cpu migration, not good, since one benefit of
ULE is keeping thread on its old cpu, the WAKEUP_LOCAL violates the
design.
WAKEUP_LOCAL used in pipe code may not be correct if the pipe only
has few of bytes to be transfered or receiver only eats a few bytes
each time, so why bother to move other threads to local cpu ?
If the other threads have many bytes cached in their old cpu, this
migration is expensive.

WAKEUP_TAIL is a good idea, I guess that you want to wake up hot-thread its code and data are still in its old cpu's cache. But this will lead
to unfair. I'd like the sleep queue to implement a policy like I did
in libthr, it picks a thread at tail of queue in a fixed percentage, it
does have some level of unfair but not fatal at all.

Thanks,
Jeff

_______________________________________________
freebsd-hackers@freebsd.org mailing list
http://lists.freebsd.org/mailman/listinfo/freebsd-hackers
To unsubscribe, send any mail to "freebsd-hackers-unsubscr...@freebsd.org"

Reply via email to