Hi, Em sex, 20 de set de 2019 às 01:00, Guo, Yejun <yejun....@intel.com> escreveu: > > The reason to add this layer is that it is used by srcnn in vf_sr. > This layer is currently ignored in native mode. After this patch, > we can add multiple outputs support for native mode. > I did not quite understand the commit message. Where does srcnn needs max a layer? What is the relation between max layer and supporting multiple outputs?
> Signed-off-by: Guo, Yejun <yejun....@intel.com> > --- > libavfilter/dnn/Makefile | 1 + > libavfilter/dnn/dnn_backend_native.c | 36 ++++++++++++++- > libavfilter/dnn/dnn_backend_native.h | 6 +-- > libavfilter/dnn/dnn_backend_native_layer_maximum.c | 54 > ++++++++++++++++++++++ > libavfilter/dnn/dnn_backend_native_layer_maximum.h | 42 +++++++++++++++++ > libavfilter/dnn/dnn_backend_tf.c | 47 +++++++++++++++++++ > tools/python/convert_from_tensorflow.py | 17 ++++++- > tools/python/convert_header.py | 2 +- > 8 files changed, 198 insertions(+), 7 deletions(-) > create mode 100644 libavfilter/dnn/dnn_backend_native_layer_maximum.c > create mode 100644 libavfilter/dnn/dnn_backend_native_layer_maximum.h > > diff --git a/libavfilter/dnn/Makefile b/libavfilter/dnn/Makefile > index 63a35e7..721094d 100644 > --- a/libavfilter/dnn/Makefile > +++ b/libavfilter/dnn/Makefile > @@ -3,6 +3,7 @@ OBJS-$(CONFIG_DNN) += > dnn/dnn_backend_native.o > OBJS-$(CONFIG_DNN) += > dnn/dnn_backend_native_layer_pad.o > OBJS-$(CONFIG_DNN) += > dnn/dnn_backend_native_layer_conv2d.o > OBJS-$(CONFIG_DNN) += > dnn/dnn_backend_native_layer_depth2space.o > +OBJS-$(CONFIG_DNN) += > dnn/dnn_backend_native_layer_maximum.o > > DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o > > diff --git a/libavfilter/dnn/dnn_backend_native.c > b/libavfilter/dnn/dnn_backend_native.c > index be548c6..22a9a33 100644 > --- a/libavfilter/dnn/dnn_backend_native.c > +++ b/libavfilter/dnn/dnn_backend_native.c > @@ -28,6 +28,7 @@ > #include "dnn_backend_native_layer_pad.h" > #include "dnn_backend_native_layer_conv2d.h" > #include "dnn_backend_native_layer_depth2space.h" > +#include "dnn_backend_native_layer_maximum.h" > > static DNNReturnType set_input_output_native(void *model, DNNInputData > *input, const char *input_name, const char **output_names, uint32_t nb_output) > { > @@ -78,6 +79,7 @@ DNNModel *ff_dnn_load_model_native(const char > *model_filename) > ConvolutionalParams *conv_params; > DepthToSpaceParams *depth_to_space_params; > LayerPadParams *pad_params; > + DnnLayerMaximumParams *maximum_params; > > model = av_malloc(sizeof(DNNModel)); > if (!model){ > @@ -237,6 +239,21 @@ DNNModel *ff_dnn_load_model_native(const char > *model_filename) > network->layers[layer].type = MIRROR_PAD; > network->layers[layer].params = pad_params; > break; > + case MAXIMUM: > + maximum_params = av_malloc(sizeof(*maximum_params)); > + if (!maximum_params){ > + avio_closep(&model_file_context); > + ff_dnn_free_model_native(&model); > + return NULL; > + } > + maximum_params->val.u32 = avio_rl32(model_file_context); > + dnn_size += 4; > + network->layers[layer].type = MAXIMUM; > + network->layers[layer].params = maximum_params; > + network->layers[layer].input_operand_indexes[0] = > (int32_t)avio_rl32(model_file_context); > + network->layers[layer].output_operand_index = > (int32_t)avio_rl32(model_file_context); > + dnn_size += 8; > + break; > default: > avio_closep(&model_file_context); > ff_dnn_free_model_native(&model); > @@ -290,6 +307,7 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel > *model, DNNData *output > ConvolutionalParams *conv_params; > DepthToSpaceParams *depth_to_space_params; > LayerPadParams *pad_params; > + DnnLayerMaximumParams *maximum_params; > > if (network->layers_num <= 0 || network->operands_num <= 0) > return DNN_ERROR; > @@ -313,6 +331,11 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel > *model, DNNData *output > dnn_execute_layer_pad(network->operands, > network->layers[layer].input_operand_indexes, > > network->layers[layer].output_operand_index, pad_params); > break; > + case MAXIMUM: > + maximum_params = (DnnLayerMaximumParams > *)network->layers[layer].params; > + dnn_execute_layer_maximum(network->operands, > network->layers[layer].input_operand_indexes, > + > network->layers[layer].output_operand_index, maximum_params); > + break; > case INPUT: > return DNN_ERROR; > } > @@ -333,10 +356,19 @@ DNNReturnType ff_dnn_execute_model_native(const > DNNModel *model, DNNData *output > return DNN_SUCCESS; > } > > -int32_t calculate_operand_data_length(DnnOperand* operand) > +int32_t calculate_operand_dims_count(const DnnOperand *oprd) > +{ > + int32_t result = 1; > + for (int i = 0; i < 4; ++i) > + result *= oprd->dims[i]; > + > + return result; > +} > + > +int32_t calculate_operand_data_length(const DnnOperand* oprd) > { > // currently, we just support DNN_FLOAT > - return operand->dims[0] * operand->dims[1] * operand->dims[2] * > operand->dims[3] * sizeof(float); > + return oprd->dims[0] * oprd->dims[1] * oprd->dims[2] * oprd->dims[3] * > sizeof(float); > } > > void ff_dnn_free_model_native(DNNModel **model) > diff --git a/libavfilter/dnn/dnn_backend_native.h > b/libavfilter/dnn/dnn_backend_native.h > index a74d138..b238d18 100644 > --- a/libavfilter/dnn/dnn_backend_native.h > +++ b/libavfilter/dnn/dnn_backend_native.h > @@ -30,7 +30,7 @@ > #include "../dnn_interface.h" > #include "libavformat/avio.h" > > -typedef enum {INPUT, CONV, DEPTH_TO_SPACE, MIRROR_PAD} DNNLayerType; > +typedef enum {INPUT = 0, CONV = 1, DEPTH_TO_SPACE = 2, MIRROR_PAD = 3, > MAXIMUM = 4} DNNLayerType; > > typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | > DOT_INPUT} DNNOperandType; > > @@ -104,6 +104,6 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel > *model, DNNData *output > > void ff_dnn_free_model_native(DNNModel **model); > > -int32_t calculate_operand_data_length(DnnOperand *operand); > - > +int32_t calculate_operand_data_length(const DnnOperand *oprd); > +int32_t calculate_operand_dims_count(const DnnOperand *oprd); > #endif > diff --git a/libavfilter/dnn/dnn_backend_native_layer_maximum.c > b/libavfilter/dnn/dnn_backend_native_layer_maximum.c > new file mode 100644 > index 0000000..a2669af > --- /dev/null > +++ b/libavfilter/dnn/dnn_backend_native_layer_maximum.c > @@ -0,0 +1,54 @@ > +/* > + * Copyright (c) 2019 Guo Yejun > + * > + * This file is part of FFmpeg. > + * > + * FFmpeg is free software; you can redistribute it and/or > + * modify it under the terms of the GNU Lesser General Public > + * License as published by the Free Software Foundation; either > + * version 2.1 of the License, or (at your option) any later version. > + * > + * FFmpeg is distributed in the hope that it will be useful, > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > + * Lesser General Public License for more details. > + * > + * You should have received a copy of the GNU Lesser General Public > + * License along with FFmpeg; if not, write to the Free Software > + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 > USA > + */ > + > +/** > + * @file > + * DNN native backend implementation. > + */ > + > +#include "dnn_backend_native.h" > +#include "libavutil/avassert.h" > +#include "dnn_backend_native_layer_maximum.h" > + > +int dnn_execute_layer_maximum(DnnOperand *operands, const int32_t > *input_operand_indexes, int32_t output_operand_index, const > DnnLayerMaximumParams *params) > +{ > + const DnnOperand *input = &operands[input_operand_indexes[0]]; > + DnnOperand *output = &operands[output_operand_index]; > + int dims_count; > + const float *src; > + float *dst; > + > + for (int i = 0; i < 4; ++i) > + output->dims[i] = input->dims[i]; > + > + output->data_type = input->data_type; > + output->length = calculate_operand_data_length(output); > + output->data = av_realloc(output->data, output->length); > + if (!output->data) > + return DNN_ERROR; > + > + dims_count = calculate_operand_dims_count(output); > + src = input->data; > + dst = output->data; > + for (int i = 0; i < dims_count; ++i) > + dst[i] = FFMAX(src[i], params->val.y); > + > + return 0; > +} > diff --git a/libavfilter/dnn/dnn_backend_native_layer_maximum.h > b/libavfilter/dnn/dnn_backend_native_layer_maximum.h > new file mode 100644 > index 0000000..6396e58 > --- /dev/null > +++ b/libavfilter/dnn/dnn_backend_native_layer_maximum.h > @@ -0,0 +1,42 @@ > +/* > + * Copyright (c) 2019 Guo Yejun > + * > + * This file is part of FFmpeg. > + * > + * FFmpeg is free software; you can redistribute it and/or > + * modify it under the terms of the GNU Lesser General Public > + * License as published by the Free Software Foundation; either > + * version 2.1 of the License, or (at your option) any later version. > + * > + * FFmpeg is distributed in the hope that it will be useful, > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > + * Lesser General Public License for more details. > + * > + * You should have received a copy of the GNU Lesser General Public > + * License along with FFmpeg; if not, write to the Free Software > + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 > USA > + */ > + > +/** > + * @file > + * DNN inference functions interface for native backend. > + */ > + > + > +#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H > +#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H > + > +#include "libavformat/avio.h" > +#include "dnn_backend_native.h" > + > +typedef struct DnnLayerMaximumParams{ > + union { > + uint32_t u32; > + float y; > + }val; > +} DnnLayerMaximumParams; > + > +int dnn_execute_layer_maximum(DnnOperand *operands, const int32_t > *input_operand_indexes, int32_t output_operand_index, const > DnnLayerMaximumParams *params); > + > +#endif > diff --git a/libavfilter/dnn/dnn_backend_tf.c > b/libavfilter/dnn/dnn_backend_tf.c > index 8a3e40a..612d2e0 100644 > --- a/libavfilter/dnn/dnn_backend_tf.c > +++ b/libavfilter/dnn/dnn_backend_tf.c > @@ -30,6 +30,7 @@ > #include "libavformat/avio.h" > #include "libavutil/avassert.h" > #include "dnn_backend_native_layer_pad.h" > +#include "dnn_backend_native_layer_maximum.h" > > #include <tensorflow/c/c_api.h> > > @@ -401,6 +402,48 @@ static DNNReturnType add_pad_layer(TFModel *tf_model, > TF_Operation **cur_op, > return DNN_SUCCESS; > } > > +static DNNReturnType add_maximum_layer(TFModel *tf_model, TF_Operation > **cur_op, > + DnnLayerMaximumParams *params, const > int layer) > +{ > + TF_Operation *op; > + TF_Tensor *tensor; > + TF_OperationDescription *op_desc; > + TF_Output input; > + float *y; > + > + char name_buffer[NAME_BUFFER_SIZE]; > + snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum/y%d", layer); > + > + op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); > + TF_SetAttrType(op_desc, "dtype", TF_FLOAT); > + tensor = TF_AllocateTensor(TF_FLOAT, NULL, 0, TF_DataTypeSize(TF_FLOAT)); > + y = (float *)TF_TensorData(tensor); > + *y = params->val.y; > + TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); > + if (TF_GetCode(tf_model->status) != TF_OK){ > + return DNN_ERROR; > + } > + op = TF_FinishOperation(op_desc, tf_model->status); > + if (TF_GetCode(tf_model->status) != TF_OK){ > + return DNN_ERROR; > + } > + > + snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum%d", layer); > + op_desc = TF_NewOperation(tf_model->graph, "Maximum", name_buffer); > + input.oper = *cur_op; > + input.index = 0; > + TF_AddInput(op_desc, input); > + input.oper = op; > + TF_AddInput(op_desc, input); > + TF_SetAttrType(op_desc, "T", TF_FLOAT); > + *cur_op = TF_FinishOperation(op_desc, tf_model->status); > + if (TF_GetCode(tf_model->status) != TF_OK){ > + return DNN_ERROR; > + } > + > + return DNN_SUCCESS; > +} > + > static DNNReturnType load_native_model(TFModel *tf_model, const char > *model_filename) > { > int32_t layer; > @@ -471,6 +514,10 @@ static DNNReturnType load_native_model(TFModel > *tf_model, const char *model_file > layer_add_res = add_pad_layer(tf_model, &op, > (LayerPadParams > *)conv_network->layers[layer].params, layer); > break; > + case MAXIMUM: > + layer_add_res = add_maximum_layer(tf_model, &op, > + (DnnLayerMaximumParams > *)conv_network->layers[layer].params, layer); > + break; > default: > CLEANUP_ON_ERROR(tf_model); > } > diff --git a/tools/python/convert_from_tensorflow.py > b/tools/python/convert_from_tensorflow.py > index 1437ad3..a663b34 100644 > --- a/tools/python/convert_from_tensorflow.py > +++ b/tools/python/convert_from_tensorflow.py > @@ -70,7 +70,7 @@ class TFConverter: > self.converted_nodes = set() > self.conv2d_scope_names = set() > self.conv2d_scopename_inputname_dict = {} > - self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3} > + self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, > 'Maximum':4} > self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2} > self.name_operand_dict = {} > > @@ -200,6 +200,19 @@ class TFConverter: > np.array([input_operand_index, output_operand_index], > dtype=np.uint32).tofile(f) > > > + def dump_maximum_to_file(self, node, f): > + assert(node.op == 'Maximum') > + self.layer_number = self.layer_number + 1 > + ynode = self.name_node_dict[node.input[1]] > + y = ynode.attr['value'].tensor.float_val[0] > + np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f) > + np.array([y], dtype=np.float32).tofile(f) > + self.converted_nodes.add(node.name) > + input_operand_index = self.add_operand(node.input[0], > Operand.IOTYPE_INPUT) > + output_operand_index = self.add_operand(node.name, > Operand.IOTYPE_OUTPUT) > + np.array([input_operand_index, output_operand_index], > dtype=np.uint32).tofile(f) > + > + > def dump_layers_to_file(self, f): > for node in self.nodes: > if node.name in self.converted_nodes: > @@ -216,6 +229,8 @@ class TFConverter: > self.dump_depth2space_to_file(node, f) > elif node.op == 'MirrorPad': > self.dump_mirrorpad_to_file(node, f) > + elif node.op == 'Maximum': > + self.dump_maximum_to_file(node, f) > > > def dump_operands_to_file(self, f): > diff --git a/tools/python/convert_header.py b/tools/python/convert_header.py > index 6a7e4af..3c2acd5 100644 > --- a/tools/python/convert_header.py > +++ b/tools/python/convert_header.py > @@ -23,4 +23,4 @@ str = 'FFMPEGDNNNATIVE' > major = 0 > > # increase minor when we don't have to re-convert the model file > -minor = 1 > +minor = 2 > -- > 2.7.4 > rest LGTM. > _______________________________________________ > ffmpeg-devel mailing list > ffmpeg-devel@ffmpeg.org > https://ffmpeg.org/mailman/listinfo/ffmpeg-devel > > To unsubscribe, visit link above, or email > ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe". _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel To unsubscribe, visit link above, or email ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".