Em qui, 29 de ago de 2019 às 02:57, Guo, Yejun <yejun....@intel.com> escreveu: > > the info can be saved in dnn operand object without regenerating again and > again, > and it is also needed for layer split/merge, and for memory reuse. > > to make things step by step, this patch just focuses on c code, > the change within python script will be added later. > > Signed-off-by: Guo, Yejun <yejun....@intel.com> > --- > libavfilter/dnn/dnn_backend_native.c | 226 > ++++++++++++------------- > libavfilter/dnn/dnn_backend_native.h | 54 +++++- > libavfilter/dnn/dnn_backend_native_layer_pad.c | 24 ++- > libavfilter/dnn/dnn_backend_native_layer_pad.h | 4 +- > tests/dnn/Makefile | 2 +- > tests/dnn/dnn-layer-pad-test.c | 60 +++++-- > 6 files changed, 236 insertions(+), 134 deletions(-) > > diff --git a/libavfilter/dnn/dnn_backend_native.c > b/libavfilter/dnn/dnn_backend_native.c > index d52abc6..daa4f50 100644 > --- a/libavfilter/dnn/dnn_backend_native.c > +++ b/libavfilter/dnn/dnn_backend_native.c > @@ -30,77 +30,30 @@ > static DNNReturnType set_input_output_native(void *model, DNNInputData > *input, const char *input_name, const char **output_names, uint32_t nb_output) > { > ConvolutionalNetwork *network = (ConvolutionalNetwork *)model; > - InputParams *input_params; > - ConvolutionalParams *conv_params; > - DepthToSpaceParams *depth_to_space_params; > - LayerPadParams *pad_params; > - int cur_width, cur_height, cur_channels; > - int32_t layer; > > - if (network->layers_num <= 0 || network->layers[0].type != INPUT){ > + if (network->layers_num <= 0 || network->operands_num <= 0) > return DNN_ERROR; > - } > - else{ > - input_params = (InputParams *)network->layers[0].params; > - input_params->width = cur_width = input->width; > - input_params->height = cur_height = input->height; > - input_params->channels = cur_channels = input->channels; > - if (input->data){ > - av_freep(&input->data); > - } > - av_assert0(input->dt == DNN_FLOAT); > - network->layers[0].output = input->data = av_malloc(cur_height * > cur_width * cur_channels * sizeof(float)); > - if (!network->layers[0].output){ > - return DNN_ERROR; > - } > - } > - > - for (layer = 1; layer < network->layers_num; ++layer){ > - switch (network->layers[layer].type){ > - case CONV: > - conv_params = (ConvolutionalParams > *)network->layers[layer].params; > - if (conv_params->input_num != cur_channels){ > - return DNN_ERROR; > - } > - cur_channels = conv_params->output_num; > - > - if (conv_params->padding_method == VALID) { > - int pad_size = (conv_params->kernel_size - 1) * > conv_params->dilation; > - cur_height -= pad_size; > - cur_width -= pad_size; > - } > - break; > - case DEPTH_TO_SPACE: > - depth_to_space_params = (DepthToSpaceParams > *)network->layers[layer].params; > - if (cur_channels % (depth_to_space_params->block_size * > depth_to_space_params->block_size) != 0){ > - return DNN_ERROR; > - } > - cur_channels = cur_channels / (depth_to_space_params->block_size > * depth_to_space_params->block_size); > - cur_height *= depth_to_space_params->block_size; > - cur_width *= depth_to_space_params->block_size; > - break; > - case MIRROR_PAD: > - pad_params = (LayerPadParams *)network->layers[layer].params; > - cur_height = cur_height + pad_params->paddings[1][0] + > pad_params->paddings[1][1]; > - cur_width = cur_width + pad_params->paddings[2][0] + > pad_params->paddings[2][1]; > - cur_channels = cur_channels + pad_params->paddings[3][0] + > pad_params->paddings[3][1]; > - break; > - default: > - return DNN_ERROR; > - } > - if (network->layers[layer].output){ > - av_freep(&network->layers[layer].output); > - } > - > - if (cur_height <= 0 || cur_width <= 0) > - return DNN_ERROR; > > - network->layers[layer].output = av_malloc(cur_height * cur_width * > cur_channels * sizeof(float)); > - if (!network->layers[layer].output){ > - return DNN_ERROR; > - } > - } > + av_assert0(input->dt == DNN_FLOAT); > + > + /** > + * as the first step, suppose network->operands[0] is the input operand. > + */ > + network->operands[0].dims[0] = 1; > + network->operands[0].dims[1] = input->height; > + network->operands[0].dims[2] = input->width; > + network->operands[0].dims[3] = input->channels; > + network->operands[0].type = DOT_INPUT; > + network->operands[0].data_type = DNN_FLOAT; > + network->operands[0].isNHWC = 1; > + > + av_freep(&network->operands[0].data); > + network->operands[0].length = > calculate_operand_data_length(&network->operands[0]); > + network->operands[0].data = av_malloc(network->operands[0].length); > + if (!network->operands[0].data) > + return DNN_ERROR; > > + input->data = network->operands[0].data; > return DNN_SUCCESS; > } > > @@ -119,6 +72,7 @@ DNNModel *ff_dnn_load_model_native(const char > *model_filename) > ConvolutionalParams *conv_params; > DepthToSpaceParams *depth_to_space_params; > LayerPadParams *pad_params; > + int32_t operand_index = 0; > > model = av_malloc(sizeof(DNNModel)); > if (!model){ > @@ -131,7 +85,7 @@ DNNModel *ff_dnn_load_model_native(const char > *model_filename) > } > file_size = avio_size(model_file_context); > > - network = av_malloc(sizeof(ConvolutionalNetwork)); > + network = av_mallocz(sizeof(ConvolutionalNetwork)); > if (!network){ > avio_closep(&model_file_context); > av_freep(&model); > @@ -139,32 +93,33 @@ DNNModel *ff_dnn_load_model_native(const char > *model_filename) > } > model->model = (void *)network; > > - network->layers_num = 1 + (int32_t)avio_rl32(model_file_context); > + network->layers_num = (int32_t)avio_rl32(model_file_context); > dnn_size = 4; > > - network->layers = av_malloc(network->layers_num * sizeof(Layer)); > + network->layers = av_mallocz(network->layers_num * sizeof(Layer)); > if (!network->layers){ > - av_freep(&network); > avio_closep(&model_file_context); > - av_freep(&model); > + ff_dnn_free_model_native(&model); > return NULL; > } > > - for (layer = 0; layer < network->layers_num; ++layer){ > - network->layers[layer].output = NULL; > - network->layers[layer].params = NULL; > - } > - network->layers[0].type = INPUT; > - network->layers[0].params = av_malloc(sizeof(InputParams)); > - if (!network->layers[0].params){ > + /** > + * Operands should be read from model file, the whole change will be > huge. > + * to make things step by step, we first mock the operands, instead of > reading from model file. > + */ > + network->operands_num = network->layers_num + 1; > + network->operands = av_mallocz(network->operands_num * > sizeof(DnnOperand)); > + if (!network->operands){ > avio_closep(&model_file_context); > ff_dnn_free_model_native(&model); > return NULL; > } > > - for (layer = 1; layer < network->layers_num; ++layer){ > + for (layer = 0; layer < network->layers_num; ++layer){ > layer_type = (int32_t)avio_rl32(model_file_context); > dnn_size += 4; > + network->layers[layer].input_operand_indexes[0] = operand_index++; > + network->layers[layer].output_operand_index = operand_index; > switch (layer_type){ > case CONV: > conv_params = av_malloc(sizeof(ConvolutionalParams)); > @@ -258,14 +213,35 @@ DNNModel *ff_dnn_load_model_native(const char > *model_filename) > > #define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x))) > > -static void convolve(const float *input, float *output, const > ConvolutionalParams *conv_params, int width, int height) > +static int convolve(DnnOperand *operands, const int32_t > *input_operand_indexes, int32_t output_operand_index, const > ConvolutionalParams *conv_params) > { > + float *output; > + int32_t input_operand_index = input_operand_indexes[0]; > + int number = operands[input_operand_index].dims[0]; > + int height = operands[input_operand_index].dims[1]; > + int width = operands[input_operand_index].dims[2]; > + int channel = operands[input_operand_index].dims[3]; > + const float *input = operands[input_operand_index].data; > + > int radius = conv_params->kernel_size >> 1; > int src_linesize = width * conv_params->input_num; > int filter_linesize = conv_params->kernel_size * conv_params->input_num; > int filter_size = conv_params->kernel_size * filter_linesize; > int pad_size = (conv_params->padding_method == VALID) ? > (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0; > > + DnnOperand *output_operand = &operands[output_operand_index]; > + output_operand->dims[0] = number; > + output_operand->dims[1] = height - pad_size * 2; > + output_operand->dims[2] = width - pad_size * 2; > + output_operand->dims[3] = conv_params->output_num; > + output_operand->length = calculate_operand_data_length(output_operand); > + output_operand->data = av_realloc(output_operand->data, > output_operand->length); > + if (!output_operand->data) > + return -1; > + output = output_operand->data; > + > + av_assert0(channel == conv_params->input_num); > + > for (int y = pad_size; y < height - pad_size; ++y) { > for (int x = pad_size; x < width - pad_size; ++x) { > for (int n_filter = 0; n_filter < conv_params->output_num; > ++n_filter) { > @@ -311,16 +287,36 @@ static void convolve(const float *input, float *output, > const ConvolutionalParam > output += conv_params->output_num; > } > } > + return 0; > } > > -static void depth_to_space(const float *input, float *output, int > block_size, int width, int height, int channels) > +static int depth_to_space(DnnOperand *operands, const int32_t > *input_operand_indexes, int32_t output_operand_index, int block_size) > { > + float *output; > + int32_t input_operand_index = input_operand_indexes[0]; > + int number = operands[input_operand_index].dims[0]; > + int height = operands[input_operand_index].dims[1]; > + int width = operands[input_operand_index].dims[2]; > + int channels = operands[input_operand_index].dims[3]; > + const float *input = operands[input_operand_index].data; > + > int y, x, by, bx, ch; > int new_channels = channels / (block_size * block_size); > int output_linesize = width * channels; > int by_linesize = output_linesize / block_size; > int x_linesize = new_channels * block_size; > > + DnnOperand *output_operand = &operands[output_operand_index]; > + output_operand->dims[0] = number; > + output_operand->dims[1] = height * block_size; > + output_operand->dims[2] = width * block_size; > + output_operand->dims[3] = new_channels; > + output_operand->length = calculate_operand_data_length(output_operand); > + output_operand->data = av_realloc(output_operand->data, > output_operand->length); > + if (!output_operand->data) > + return -1; > + output = output_operand->data; > + > for (y = 0; y < height; ++y){ > for (x = 0; x < width; ++x){ > for (by = 0; by < block_size; ++by){ > @@ -334,58 +330,38 @@ static void depth_to_space(const float *input, float > *output, int block_size, in > } > output += output_linesize; > } > + return 0; > } > > DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData > *outputs, uint32_t nb_output) > { > ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model; > - int cur_width, cur_height, cur_channels; > int32_t layer; > - InputParams *input_params; > ConvolutionalParams *conv_params; > DepthToSpaceParams *depth_to_space_params; > LayerPadParams *pad_params; > > - if (network->layers_num <= 0 || network->layers[0].type != INPUT || > !network->layers[0].output){ > + if (network->layers_num <= 0 || network->operands_num <= 0) > + return DNN_ERROR; > + if (!network->operands[0].data) > return DNN_ERROR; > - } > - else{ > - input_params = (InputParams *)network->layers[0].params; > - cur_width = input_params->width; > - cur_height = input_params->height; > - cur_channels = input_params->channels; > - } > > - for (layer = 1; layer < network->layers_num; ++layer){ > - if (!network->layers[layer].output){ > - return DNN_ERROR; > - } > + for (layer = 0; layer < network->layers_num; ++layer){ > switch (network->layers[layer].type){ > case CONV: > conv_params = (ConvolutionalParams > *)network->layers[layer].params; > - convolve(network->layers[layer - 1].output, > network->layers[layer].output, conv_params, cur_width, cur_height); > - cur_channels = conv_params->output_num; > - if (conv_params->padding_method == VALID) { > - int pad_size = (conv_params->kernel_size - 1) * > conv_params->dilation; > - cur_height -= pad_size; > - cur_width -= pad_size; > - } > + convolve(network->operands, > network->layers[layer].input_operand_indexes, > + network->layers[layer].output_operand_index, > conv_params); > break; > case DEPTH_TO_SPACE: > depth_to_space_params = (DepthToSpaceParams > *)network->layers[layer].params; > - depth_to_space(network->layers[layer - 1].output, > network->layers[layer].output, > - depth_to_space_params->block_size, cur_width, > cur_height, cur_channels); > - cur_height *= depth_to_space_params->block_size; > - cur_width *= depth_to_space_params->block_size; > - cur_channels /= depth_to_space_params->block_size * > depth_to_space_params->block_size; > + depth_to_space(network->operands, > network->layers[layer].input_operand_indexes, > + network->layers[layer].output_operand_index, > depth_to_space_params->block_size); > break; > case MIRROR_PAD: > pad_params = (LayerPadParams *)network->layers[layer].params; > - dnn_execute_layer_pad(network->layers[layer - 1].output, > network->layers[layer].output, > - pad_params, 1, cur_height, cur_width, > cur_channels); > - cur_height = cur_height + pad_params->paddings[1][0] + > pad_params->paddings[1][1]; > - cur_width = cur_width + pad_params->paddings[2][0] + > pad_params->paddings[2][1]; > - cur_channels = cur_channels + pad_params->paddings[3][0] + > pad_params->paddings[3][1]; > + dnn_execute_layer_pad(network->operands, > network->layers[layer].input_operand_indexes, > + > network->layers[layer].output_operand_index, pad_params); > break; > case INPUT: > return DNN_ERROR; > @@ -395,14 +371,24 @@ DNNReturnType ff_dnn_execute_model_native(const > DNNModel *model, DNNData *output > // native mode does not support multiple outputs yet > if (nb_output > 1) > return DNN_ERROR; > - outputs[0].data = network->layers[network->layers_num - 1].output; > - outputs[0].height = cur_height; > - outputs[0].width = cur_width; > - outputs[0].channels = cur_channels; > + > + /** > + * as the first step, suppose network->operands[network->operands_num - > 1] is the output operand. > + */ > + outputs[0].data = network->operands[network->operands_num - 1].data; > + outputs[0].height = network->operands[network->operands_num - 1].dims[1]; > + outputs[0].width = network->operands[network->operands_num - 1].dims[2]; > + outputs[0].channels = network->operands[network->operands_num - > 1].dims[3]; > > return DNN_SUCCESS; > } > > +int32_t calculate_operand_data_length(DnnOperand* operand) > +{ > + // currently, we just support DNN_FLOAT > + return operand->dims[0] * operand->dims[1] * operand->dims[2] * > operand->dims[3] * sizeof(float); > +} > + > void ff_dnn_free_model_native(DNNModel **model) > { > ConvolutionalNetwork *network; > @@ -413,7 +399,6 @@ void ff_dnn_free_model_native(DNNModel **model) > { > network = (ConvolutionalNetwork *)(*model)->model; > for (layer = 0; layer < network->layers_num; ++layer){ > - av_freep(&network->layers[layer].output); > if (network->layers[layer].type == CONV){ > conv_params = (ConvolutionalParams > *)network->layers[layer].params; > av_freep(&conv_params->kernel); > @@ -422,6 +407,11 @@ void ff_dnn_free_model_native(DNNModel **model) > av_freep(&network->layers[layer].params); > } > av_freep(&network->layers); > + > + for (uint32_t operand = 0; operand < network->operands_num; > ++operand) > + av_freep(&network->operands[operand].data); > + av_freep(&network->operands); > + > av_freep(&network); > av_freep(model); > } > diff --git a/libavfilter/dnn/dnn_backend_native.h > b/libavfilter/dnn/dnn_backend_native.h > index b6f9533..87b4394 100644 > --- a/libavfilter/dnn/dnn_backend_native.h > +++ b/libavfilter/dnn/dnn_backend_native.h > @@ -36,12 +36,60 @@ typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} > DNNActivationFunc; > > typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNConvPaddingParam; > > +typedef enum {DOT_INPUT, DOT_INTERMEDIATE, DOT_OUTPUT} DNNOperandType; > + > typedef struct Layer{ > DNNLayerType type; > - float *output; > + /** > + * a layer can have multiple inputs and one output. > + * 4 is just a big enough number for input operands (increase it if > necessary), > + * do not use 'int32_t *input_operand_indexes', so we don't worry about > mem leaks. > + */ > + int32_t input_operand_indexes[4]; > + int32_t output_operand_index; > void *params; > } Layer; > > +typedef struct DnnOperand{ > + /** > + * there are two memory layouts, NHWC or NCHW, so we use dims, > + * dims[0] is Number. > + */ > + int32_t dims[4]; > + > + /** > + * input/output/intermediate operand of the network > + */ > + DNNOperandType type; > + > + /** > + * support different kinds of data type such as float, half float, int8 > etc, > + * first support float now. > + */ > + DNNDataType data_type; > + > + /** > + * NHWC if 1, otherwise NCHW. > + * let's first support NHWC only, this flag is for extensive usage. > + */ > + int8_t isNHWC; > + > + /** > + * to avoid possible memory leak, do not use char *name > + */ > + char name[128]; > + > + /** > + * data pointer with data length in bytes. > + * usedNumbersLeft is only valid for intermediate operand, > + * it means how many layers still depend on this operand, > + * todo: the memory can be reused when usedNumbersLeft is zero. > + */ > + void *data; > + int32_t length; > + int32_t usedNumbersLeft; > +}DnnOperand; > + > typedef struct ConvolutionalParams{ > int32_t input_num, output_num, kernel_size; > DNNActivationFunc activation; > @@ -63,6 +111,8 @@ typedef struct DepthToSpaceParams{ > typedef struct ConvolutionalNetwork{ > Layer *layers; > int32_t layers_num; > + DnnOperand *operands; > + int32_t operands_num; > } ConvolutionalNetwork; > > DNNModel *ff_dnn_load_model_native(const char *model_filename); > @@ -71,4 +121,6 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel > *model, DNNData *output > > void ff_dnn_free_model_native(DNNModel **model); > > +int32_t calculate_operand_data_length(DnnOperand *operand); > + > #endif > diff --git a/libavfilter/dnn/dnn_backend_native_layer_pad.c > b/libavfilter/dnn/dnn_backend_native_layer_pad.c > index 5417d73..c2905a7 100644 > --- a/libavfilter/dnn/dnn_backend_native_layer_pad.c > +++ b/libavfilter/dnn/dnn_backend_native_layer_pad.c > @@ -48,12 +48,21 @@ static int after_get_buddy(int given, int border, > LayerPadModeParam mode) > } > } > > -void dnn_execute_layer_pad(const float *input, float *output, const > LayerPadParams *params, int number, int height, int width, int channel) > +int dnn_execute_layer_pad(DnnOperand *operands, const int32_t > *input_operand_indexes, int32_t output_operand_index, > + const LayerPadParams *params) > { > int32_t before_paddings; > int32_t after_paddings; > + float* output; > > // suppose format is <N, H, W, C> > + int32_t input_operand_index = input_operand_indexes[0]; > + int number = operands[input_operand_index].dims[0]; > + int height = operands[input_operand_index].dims[1]; > + int width = operands[input_operand_index].dims[2]; > + int channel = operands[input_operand_index].dims[3]; > + const float *input = operands[input_operand_index].data; > + > int new_number = number + params->paddings[0][0] + > params->paddings[0][1]; > int new_height = height + params->paddings[1][0] + > params->paddings[1][1]; > int new_width = width + params->paddings[2][0] + params->paddings[2][1]; > @@ -67,6 +76,17 @@ void dnn_execute_layer_pad(const float *input, float > *output, const LayerPadPara > int new_wc_stride = new_c_stride * new_width; > int new_hwc_stride = new_wc_stride * new_height; > > + DnnOperand *output_operand = &operands[output_operand_index]; > + output_operand->dims[0] = new_number; > + output_operand->dims[1] = new_height; > + output_operand->dims[2] = new_width; > + output_operand->dims[3] = new_channel; > + output_operand->length = calculate_operand_data_length(output_operand); > + output_operand->data = av_realloc(output_operand->data, > output_operand->length); > + if (!output_operand->data) > + return -1; > + output = output_operand->data; > + > // copy the original data > for (int n = 0; n < number; n++) { > for (int h = 0; h < height; h++) { > @@ -208,4 +228,6 @@ void dnn_execute_layer_pad(const float *input, float > *output, const LayerPadPara > } > } > } > + > + return 0; > } > diff --git a/libavfilter/dnn/dnn_backend_native_layer_pad.h > b/libavfilter/dnn/dnn_backend_native_layer_pad.h > index 0fbe652..7cc8213 100644 > --- a/libavfilter/dnn/dnn_backend_native_layer_pad.h > +++ b/libavfilter/dnn/dnn_backend_native_layer_pad.h > @@ -26,6 +26,7 @@ > #define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_PAD_H > > #include <stdint.h> > +#include "dnn_backend_native.h" > > typedef enum {LPMP_CONSTANT, LPMP_REFLECT, LPMP_SYMMETRIC} LayerPadModeParam; > > @@ -35,6 +36,7 @@ typedef struct LayerPadParams{ > float constant_values; > } LayerPadParams; > > -void dnn_execute_layer_pad(const float *input, float *output, const > LayerPadParams *params, int number, int height, int width, int channel); > +int dnn_execute_layer_pad(DnnOperand *operands, const int32_t > *input_operand_indexes, int32_t output_operand_index, > + const LayerPadParams *params); > > #endif > diff --git a/tests/dnn/Makefile b/tests/dnn/Makefile > index 0e050ea..fabed75 100644 > --- a/tests/dnn/Makefile > +++ b/tests/dnn/Makefile > @@ -5,7 +5,7 @@ DNNTESTPROGS := > $(DNNTESTPROGS:%=$(DNNTESTSDIR)/%-test$(EXESUF)) > -include $(wildcard $(DNNTESTOBJS:.o=.d)) > > $(DNNTESTPROGS): %$(EXESUF): %.o $(FF_STATIC_DEP_LIBS) > - $(LD) $(LDFLAGS) $(LDEXEFLAGS) $(LD_O) $(filter %.o,$^) > $(FF_STATIC_DEP_LIBS) $(ELIBS) > + $(LD) $(LDFLAGS) $(LDEXEFLAGS) $(LD_O) $(filter %.o,$^) > $(FF_STATIC_DEP_LIBS) $(EXTRALIBS-avcodec) $(EXTRALIBS-avfilter) > $(EXTRALIBS-avformat) $(EXTRALIBS-avutil) $(EXTRALIBS-swresample) $(EXTRALIBS) > > testclean:: > $(RM) $(addprefix $(DNNTESTSDIR)/,$(CLEANSUFFIXES) *-test$(EXESUF)) > diff --git a/tests/dnn/dnn-layer-pad-test.c b/tests/dnn/dnn-layer-pad-test.c > index 28a49eb..1fb2be1 100644 > --- a/tests/dnn/dnn-layer-pad-test.c > +++ b/tests/dnn/dnn-layer-pad-test.c > @@ -44,6 +44,8 @@ static int test_with_mode_symmetric(void) > */ > > LayerPadParams params; > + DnnOperand operands[2]; > + int32_t input_indexes[1]; > float input[1*4*4*3] = { > 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, > 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, > 38, 39, 40, 41, 42, 43, 44, 45, 46, 47 > }; > @@ -57,8 +59,7 @@ static int test_with_mode_symmetric(void) > 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, > 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, 34.0, 35.0, 30.0, 31.0, 32.0, > 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, > 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, > 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0 > }; > - float output[1*9*9*3]; > - memset(output, 0, sizeof(output)); > + float *output; > > params.mode = LPMP_SYMMETRIC; > params.paddings[0][0] = 0; > @@ -70,15 +71,26 @@ static int test_with_mode_symmetric(void) > params.paddings[3][0] = 0; > params.paddings[3][1] = 0; > > - dnn_execute_layer_pad(input, output, ¶ms, 1, 4, 4, 3); > + operands[0].data = input; > + operands[0].dims[0] = 1; > + operands[0].dims[1] = 4; > + operands[0].dims[2] = 4; > + operands[0].dims[3] = 3; > + operands[1].data = NULL; > > - for (int i = 0; i < sizeof(output) / sizeof(float); i++) { > + input_indexes[0] = 0; > + dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms); > + > + output = operands[1].data; > + for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { > if (fabs(output[i] - expected_output[i]) > EPSON) { > printf("at index %d, output: %f, expected_output: %f\n", i, > output[i], expected_output[i]); > + av_freep(&output); > return 1; > } > } > > + av_freep(&output); > return 0; > > } > @@ -102,6 +114,8 @@ static int test_with_mode_reflect(void) > */ > > LayerPadParams params; > + DnnOperand operands[2]; > + int32_t input_indexes[1]; > float input[3*2*2*3] = { > 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, > 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 > }; > @@ -110,8 +124,7 @@ static int test_with_mode_reflect(void) > 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, > 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, > 35.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, > 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 > }; > - float output[6*2*2*3]; > - memset(output, 0, sizeof(output)); > + float *output; > > params.mode = LPMP_REFLECT; > params.paddings[0][0] = 1; > @@ -123,15 +136,26 @@ static int test_with_mode_reflect(void) > params.paddings[3][0] = 0; > params.paddings[3][1] = 0; > > - dnn_execute_layer_pad(input, output, ¶ms, 3, 2, 2, 3); > + operands[0].data = input; > + operands[0].dims[0] = 3; > + operands[0].dims[1] = 2; > + operands[0].dims[2] = 2; > + operands[0].dims[3] = 3; > + operands[1].data = NULL; > + > + input_indexes[0] = 0; > + dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms); > > - for (int i = 0; i < sizeof(output) / sizeof(float); i++) { > + output = operands[1].data; > + for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { > if (fabs(output[i] - expected_output[i]) > EPSON) { > printf("at index %d, output: %f, expected_output: %f\n", i, > output[i], expected_output[i]); > + av_freep(&output); > return 1; > } > } > > + av_freep(&output); > return 0; > > } > @@ -155,6 +179,8 @@ static int test_with_mode_constant(void) > */ > > LayerPadParams params; > + DnnOperand operands[2]; > + int32_t input_indexes[1]; > float input[1*2*2*3] = { > 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 > }; > @@ -163,8 +189,7 @@ static int test_with_mode_constant(void) > 728.0, 728.0, 0.0, 1.0, 2.0, 728.0, 728.0, 728.0, 3.0, 4.0, 5.0, > 728.0, 728.0, > 728.0, 6.0, 7.0, 8.0, 728.0, 728.0, 728.0, 9.0, 10.0, 11.0, 728.0, > 728.0 > }; > - float output[1*3*2*6]; > - memset(output, 0, sizeof(output)); > + float *output; > > params.mode = LPMP_CONSTANT; > params.constant_values = 728; > @@ -177,15 +202,26 @@ static int test_with_mode_constant(void) > params.paddings[3][0] = 1; > params.paddings[3][1] = 2; > > - dnn_execute_layer_pad(input, output, ¶ms, 1, 2, 2, 3); > + operands[0].data = input; > + operands[0].dims[0] = 3; > + operands[0].dims[1] = 2; > + operands[0].dims[2] = 2; > + operands[0].dims[3] = 3; > + operands[1].data = NULL; > + > + input_indexes[0] = 0; > + dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms); > > - for (int i = 0; i < sizeof(output) / sizeof(float); i++) { > + output = operands[1].data; > + for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { > if (fabs(output[i] - expected_output[i]) > EPSON) { > printf("at index %d, output: %f, expected_output: %f\n", i, > output[i], expected_output[i]); > + av_freep(&output); > return 1; > } > } > > + av_freep(&output); > return 0; > > } > -- > 2.7.4 >
Pushed, thanks! > _______________________________________________ > ffmpeg-devel mailing list > ffmpeg-devel@ffmpeg.org > https://ffmpeg.org/mailman/listinfo/ffmpeg-devel > > To unsubscribe, visit link above, or email > ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe". _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel To unsubscribe, visit link above, or email ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".