LGTM. Pushed, thanks! Em dom, 28 de jul de 2019 às 22:59, Guo, Yejun <yejun....@intel.com> escreveu: > > 'make fate-dnn-layer-pad' to run the test > > Signed-off-by: Guo, Yejun <yejun....@intel.com> > --- > tests/Makefile | 5 +- > tests/dnn/Makefile | 11 +++ > tests/dnn/dnn-layer-pad-test.c | 203 > +++++++++++++++++++++++++++++++++++++++++ > tests/fate/dnn.mak | 8 ++ > 4 files changed, 226 insertions(+), 1 deletion(-) > create mode 100644 tests/dnn/Makefile > create mode 100644 tests/dnn/dnn-layer-pad-test.c > create mode 100644 tests/fate/dnn.mak > > diff --git a/tests/Makefile b/tests/Makefile > index 624292d..0ef571b 100644 > --- a/tests/Makefile > +++ b/tests/Makefile > @@ -10,7 +10,8 @@ FFMPEG=ffmpeg$(PROGSSUF)$(EXESUF) > $(AREF): CMP= > > APITESTSDIR := tests/api > -FATE_OUTDIRS = tests/data tests/data/fate tests/data/filtergraphs > tests/data/lavf tests/data/lavf-fate tests/data/pixfmt tests/vsynth1 > $(APITESTSDIR) > +DNNTESTSDIR := tests/dnn > +FATE_OUTDIRS = tests/data tests/data/fate tests/data/filtergraphs > tests/data/lavf tests/data/lavf-fate tests/data/pixfmt tests/vsynth1 > $(APITESTSDIR) $(DNNTESTSDIR) > OUTDIRS += $(FATE_OUTDIRS) > > $(VREF): tests/videogen$(HOSTEXESUF) | tests/vsynth1 > @@ -85,6 +86,7 @@ FILTERDEMDECENCMUX = $(call ALLYES, $(1:%=%_FILTER) > $(2)_DEMUXER $(3)_DECODER $( > PARSERDEMDEC = $(call ALLYES, $(1)_PARSER $(2)_DEMUXER $(3)_DECODER) > > include $(SRC_PATH)/$(APITESTSDIR)/Makefile > +include $(SRC_PATH)/$(DNNTESTSDIR)/Makefile > > include $(SRC_PATH)/tests/fate/acodec.mak > include $(SRC_PATH)/tests/fate/vcodec.mak > @@ -118,6 +120,7 @@ include $(SRC_PATH)/tests/fate/cover-art.mak > include $(SRC_PATH)/tests/fate/dca.mak > include $(SRC_PATH)/tests/fate/demux.mak > include $(SRC_PATH)/tests/fate/dfa.mak > +include $(SRC_PATH)/tests/fate/dnn.mak > include $(SRC_PATH)/tests/fate/dnxhd.mak > include $(SRC_PATH)/tests/fate/dpcm.mak > include $(SRC_PATH)/tests/fate/ea.mak > diff --git a/tests/dnn/Makefile b/tests/dnn/Makefile > new file mode 100644 > index 0000000..b2e6680 > --- /dev/null > +++ b/tests/dnn/Makefile > @@ -0,0 +1,11 @@ > +DNNTESTPROGS += dnn-layer-pad > + > +DNNTESTOBJS := $(DNNTESTOBJS:%=$(DNNTESTSDIR)%) > $(DNNTESTPROGS:%=$(DNNTESTSDIR)/%-test.o) > +DNNTESTPROGS := $(DNNTESTPROGS:%=$(DNNTESTSDIR)/%-test$(EXESUF)) > +-include $(wildcard $(DNNTESTOBJS:.o=.d)) > + > +$(DNNTESTPROGS): %$(EXESUF): %.o $(FF_DEP_LIBS) > + $(LD) $(LDFLAGS) $(LDEXEFLAGS) $(LD_O) $(filter %.o,$^) > $(FF_EXTRALIBS) $(ELIBS) > + > +testclean:: > + $(RM) $(addprefix $(DNNTESTSDIR)/,$(CLEANSUFFIXES) *-test$(EXESUF)) > diff --git a/tests/dnn/dnn-layer-pad-test.c b/tests/dnn/dnn-layer-pad-test.c > new file mode 100644 > index 0000000..28a49eb > --- /dev/null > +++ b/tests/dnn/dnn-layer-pad-test.c > @@ -0,0 +1,203 @@ > +/* > + * Copyright (c) 2019 Guo Yejun > + * > + * This file is part of FFmpeg. > + * > + * FFmpeg is free software; you can redistribute it and/or > + * modify it under the terms of the GNU Lesser General Public > + * License as published by the Free Software Foundation; either > + * version 2.1 of the License, or (at your option) any later version. > + * > + * FFmpeg is distributed in the hope that it will be useful, > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > + * Lesser General Public License for more details. > + * > + * You should have received a copy of the GNU Lesser General Public > + * License along with FFmpeg; if not, write to the Free Software > + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 > USA > + */ > + > +#include <stdio.h> > +#include <string.h> > +#include <math.h> > +#include "libavfilter/dnn/dnn_backend_native_layer_pad.h" > + > +#define EPSON 0.00001 > + > +static int test_with_mode_symmetric(void) > +{ > + // the input data and expected data are generated with below python code. > + /* > + x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) > + y = tf.pad(x, [[0, 0], [2, 3], [3, 2], [0, 0]], 'SYMMETRIC') > + data = np.arange(48).reshape(1, 4, 4, 3); > + > + sess=tf.Session() > + sess.run(tf.global_variables_initializer()) > + output = sess.run(y, feed_dict={x: data}) > + > + print(list(data.flatten())) > + print(list(output.flatten())) > + print(data.shape) > + print(output.shape) > + */ > + > + LayerPadParams params; > + float input[1*4*4*3] = { > + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, > 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, > 38, 39, 40, 41, 42, 43, 44, 45, 46, 47 > + }; > + float expected_output[1*9*9*3] = { > + 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, > 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, > 18.0, 19.0, 20.0, 6.0, 7.0, 8.0, 3.0, > + 4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, > 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 6.0, 7.0, 8.0, 3.0, > 4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, > + 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, > 8.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, > 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, > + 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 30.0, 31.0, > 32.0, 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, > 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, > + 34.0, 35.0, 30.0, 31.0, 32.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, > 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, > 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0, > + 44.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, > 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, > 47.0, 42.0, 43.0, 44.0, 30.0, 31.0, 32.0, > + 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, > 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, 34.0, 35.0, 30.0, 31.0, 32.0, > 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, > + 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, > 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0 > + }; > + float output[1*9*9*3]; > + memset(output, 0, sizeof(output)); > + > + params.mode = LPMP_SYMMETRIC; > + params.paddings[0][0] = 0; > + params.paddings[0][1] = 0; > + params.paddings[1][0] = 2; > + params.paddings[1][1] = 3; > + params.paddings[2][0] = 3; > + params.paddings[2][1] = 2; > + params.paddings[3][0] = 0; > + params.paddings[3][1] = 0; > + > + dnn_execute_layer_pad(input, output, ¶ms, 1, 4, 4, 3); > + > + for (int i = 0; i < sizeof(output) / sizeof(float); i++) { > + if (fabs(output[i] - expected_output[i]) > EPSON) { > + printf("at index %d, output: %f, expected_output: %f\n", i, > output[i], expected_output[i]); > + return 1; > + } > + } > + > + return 0; > + > +} > + > +static int test_with_mode_reflect(void) > +{ > + // the input data and expected data are generated with below python code. > + /* > + x = tf.placeholder(tf.float32, shape=[3, None, None, 3]) > + y = tf.pad(x, [[1, 2], [0, 0], [0, 0], [0, 0]], 'REFLECT') > + data = np.arange(36).reshape(3, 2, 2, 3); > + > + sess=tf.Session() > + sess.run(tf.global_variables_initializer()) > + output = sess.run(y, feed_dict={x: data}) > + > + print(list(data.flatten())) > + print(list(output.flatten())) > + print(data.shape) > + print(output.shape) > + */ > + > + LayerPadParams params; > + float input[3*2*2*3] = { > + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, > 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 > + }; > + float expected_output[6*2*2*3] = { > + 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, > 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, > + 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, > 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, > + 35.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, > 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 > + }; > + float output[6*2*2*3]; > + memset(output, 0, sizeof(output)); > + > + params.mode = LPMP_REFLECT; > + params.paddings[0][0] = 1; > + params.paddings[0][1] = 2; > + params.paddings[1][0] = 0; > + params.paddings[1][1] = 0; > + params.paddings[2][0] = 0; > + params.paddings[2][1] = 0; > + params.paddings[3][0] = 0; > + params.paddings[3][1] = 0; > + > + dnn_execute_layer_pad(input, output, ¶ms, 3, 2, 2, 3); > + > + for (int i = 0; i < sizeof(output) / sizeof(float); i++) { > + if (fabs(output[i] - expected_output[i]) > EPSON) { > + printf("at index %d, output: %f, expected_output: %f\n", i, > output[i], expected_output[i]); > + return 1; > + } > + } > + > + return 0; > + > +} > + > +static int test_with_mode_constant(void) > +{ > + // the input data and expected data are generated with below python code. > + /* > + x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) > + y = tf.pad(x, [[0, 0], [1, 0], [0, 0], [1, 2]], 'CONSTANT', > constant_values=728) > + data = np.arange(12).reshape(1, 2, 2, 3); > + > + sess=tf.Session() > + sess.run(tf.global_variables_initializer()) > + output = sess.run(y, feed_dict={x: data}) > + > + print(list(data.flatten())) > + print(list(output.flatten())) > + print(data.shape) > + print(output.shape) > + */ > + > + LayerPadParams params; > + float input[1*2*2*3] = { > + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 > + }; > + float expected_output[1*3*2*6] = { > + 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, > 728.0, 728.0, > + 728.0, 728.0, 0.0, 1.0, 2.0, 728.0, 728.0, 728.0, 3.0, 4.0, 5.0, > 728.0, 728.0, > + 728.0, 6.0, 7.0, 8.0, 728.0, 728.0, 728.0, 9.0, 10.0, 11.0, 728.0, > 728.0 > + }; > + float output[1*3*2*6]; > + memset(output, 0, sizeof(output)); > + > + params.mode = LPMP_CONSTANT; > + params.constant_values = 728; > + params.paddings[0][0] = 0; > + params.paddings[0][1] = 0; > + params.paddings[1][0] = 1; > + params.paddings[1][1] = 0; > + params.paddings[2][0] = 0; > + params.paddings[2][1] = 0; > + params.paddings[3][0] = 1; > + params.paddings[3][1] = 2; > + > + dnn_execute_layer_pad(input, output, ¶ms, 1, 2, 2, 3); > + > + for (int i = 0; i < sizeof(output) / sizeof(float); i++) { > + if (fabs(output[i] - expected_output[i]) > EPSON) { > + printf("at index %d, output: %f, expected_output: %f\n", i, > output[i], expected_output[i]); > + return 1; > + } > + } > + > + return 0; > + > +} > + > +int main(int argc, char **argv) > +{ > + if (test_with_mode_symmetric()) > + return 1; > + > + if (test_with_mode_reflect()) > + return 1; > + > + if (test_with_mode_constant()) > + return 1; > +} > diff --git a/tests/fate/dnn.mak b/tests/fate/dnn.mak > new file mode 100644 > index 0000000..a077a4a > --- /dev/null > +++ b/tests/fate/dnn.mak > @@ -0,0 +1,8 @@ > +FATE_DNN += fate-dnn-layer-pad > +fate-dnn-layer-pad: $(DNNTESTSDIR)/dnn-layer-pad-test$(EXESUF) > +fate-dnn-layer-pad: CMD = run $(DNNTESTSDIR)/dnn-layer-pad-test$(EXESUF) > +fate-dnn-layer-pad: CMP = null > + > +FATE-yes += $(FATE_DNN) > + > +fate-dnn: $(FATE_DNN) > -- > 2.7.4 > > _______________________________________________ > ffmpeg-devel mailing list > ffmpeg-devel@ffmpeg.org > https://ffmpeg.org/mailman/listinfo/ffmpeg-devel > > To unsubscribe, visit link above, or email > ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe". _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
To unsubscribe, visit link above, or email ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".