Em sex, 26 de jul de 2019 às 13:02, Pedro Arthur <bygran...@gmail.com> escreveu: > > Hi, > It fails fate source guard header tests, > The headers should be changed from AVFILTER_DNN_BACKEND_xxx to > AVFILTER_DNN_DNN_BACKEND_xxx. Changed locally and pushed.
> Other than that it LGTM. > > Em ter, 16 de jul de 2019 às 02:58, Guo, Yejun <yejun....@intel.com> escreveu: > > > > it is expected that there will be more files to support native mode, > > so put all the dnn codes under libavfilter/dnn > > > > The main change of this patch is to move the file location, see below: > > modified: libavfilter/Makefile > > new file: libavfilter/dnn/Makefile > > renamed: libavfilter/dnn_backend_native.c -> > > libavfilter/dnn/dnn_backend_native.c > > renamed: libavfilter/dnn_backend_native.h -> > > libavfilter/dnn/dnn_backend_native.h > > renamed: libavfilter/dnn_backend_tf.c -> libavfilter/dnn/dnn_backend_tf.c > > renamed: libavfilter/dnn_backend_tf.h -> libavfilter/dnn/dnn_backend_tf.h > > renamed: libavfilter/dnn_interface.c -> libavfilter/dnn/dnn_interface.c > > > > Signed-off-by: Guo, Yejun <yejun....@intel.com> > > --- > > libavfilter/Makefile | 3 +- > > libavfilter/dnn/Makefile | 6 + > > libavfilter/dnn/dnn_backend_native.c | 389 ++++++++++++++++++++++ > > libavfilter/dnn/dnn_backend_native.h | 74 +++++ > > libavfilter/dnn/dnn_backend_tf.c | 603 > > +++++++++++++++++++++++++++++++++++ > > libavfilter/dnn/dnn_backend_tf.h | 38 +++ > > libavfilter/dnn/dnn_interface.c | 63 ++++ > > libavfilter/dnn_backend_native.c | 389 ---------------------- > > libavfilter/dnn_backend_native.h | 74 ----- > > libavfilter/dnn_backend_tf.c | 603 > > ----------------------------------- > > libavfilter/dnn_backend_tf.h | 38 --- > > libavfilter/dnn_interface.c | 63 ---- > > 12 files changed, 1174 insertions(+), 1169 deletions(-) > > create mode 100644 libavfilter/dnn/Makefile > > create mode 100644 libavfilter/dnn/dnn_backend_native.c > > create mode 100644 libavfilter/dnn/dnn_backend_native.h > > create mode 100644 libavfilter/dnn/dnn_backend_tf.c > > create mode 100644 libavfilter/dnn/dnn_backend_tf.h > > create mode 100644 libavfilter/dnn/dnn_interface.c > > delete mode 100644 libavfilter/dnn_backend_native.c > > delete mode 100644 libavfilter/dnn_backend_native.h > > delete mode 100644 libavfilter/dnn_backend_tf.c > > delete mode 100644 libavfilter/dnn_backend_tf.h > > delete mode 100644 libavfilter/dnn_interface.c > > > > diff --git a/libavfilter/Makefile b/libavfilter/Makefile > > index 455c809..450d781 100644 > > --- a/libavfilter/Makefile > > +++ b/libavfilter/Makefile > > @@ -26,9 +26,8 @@ OBJS-$(HAVE_THREADS) += pthread.o > > > > # subsystems > > OBJS-$(CONFIG_QSVVPP) += qsvvpp.o > > -DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn_backend_tf.o > > -OBJS-$(CONFIG_DNN) += dnn_interface.o > > dnn_backend_native.o $(DNN-OBJS-yes) > > OBJS-$(CONFIG_SCENE_SAD) += scene_sad.o > > +include $(SRC_PATH)/libavfilter/dnn/Makefile > > > > # audio filters > > OBJS-$(CONFIG_ABENCH_FILTER) += f_bench.o > > diff --git a/libavfilter/dnn/Makefile b/libavfilter/dnn/Makefile > > new file mode 100644 > > index 0000000..1d12ade > > --- /dev/null > > +++ b/libavfilter/dnn/Makefile > > @@ -0,0 +1,6 @@ > > +OBJS-$(CONFIG_DNN) += dnn/dnn_interface.o > > +OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o > > + > > +DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o > > + > > +OBJS-$(CONFIG_DNN) += $(DNN-OBJS-yes) > > diff --git a/libavfilter/dnn/dnn_backend_native.c > > b/libavfilter/dnn/dnn_backend_native.c > > new file mode 100644 > > index 0000000..82e900b > > --- /dev/null > > +++ b/libavfilter/dnn/dnn_backend_native.c > > @@ -0,0 +1,389 @@ > > +/* > > + * Copyright (c) 2018 Sergey Lavrushkin > > + * > > + * This file is part of FFmpeg. > > + * > > + * FFmpeg is free software; you can redistribute it and/or > > + * modify it under the terms of the GNU Lesser General Public > > + * License as published by the Free Software Foundation; either > > + * version 2.1 of the License, or (at your option) any later version. > > + * > > + * FFmpeg is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > > + * Lesser General Public License for more details. > > + * > > + * You should have received a copy of the GNU Lesser General Public > > + * License along with FFmpeg; if not, write to the Free Software > > + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA > > 02110-1301 USA > > + */ > > + > > +/** > > + * @file > > + * DNN native backend implementation. > > + */ > > + > > +#include "dnn_backend_native.h" > > +#include "libavutil/avassert.h" > > + > > +static DNNReturnType set_input_output_native(void *model, DNNInputData > > *input, const char *input_name, const char **output_names, uint32_t > > nb_output) > > +{ > > + ConvolutionalNetwork *network = (ConvolutionalNetwork *)model; > > + InputParams *input_params; > > + ConvolutionalParams *conv_params; > > + DepthToSpaceParams *depth_to_space_params; > > + int cur_width, cur_height, cur_channels; > > + int32_t layer; > > + > > + if (network->layers_num <= 0 || network->layers[0].type != INPUT){ > > + return DNN_ERROR; > > + } > > + else{ > > + input_params = (InputParams *)network->layers[0].params; > > + input_params->width = cur_width = input->width; > > + input_params->height = cur_height = input->height; > > + input_params->channels = cur_channels = input->channels; > > + if (input->data){ > > + av_freep(&input->data); > > + } > > + av_assert0(input->dt == DNN_FLOAT); > > + network->layers[0].output = input->data = av_malloc(cur_height * > > cur_width * cur_channels * sizeof(float)); > > + if (!network->layers[0].output){ > > + return DNN_ERROR; > > + } > > + } > > + > > + for (layer = 1; layer < network->layers_num; ++layer){ > > + switch (network->layers[layer].type){ > > + case CONV: > > + conv_params = (ConvolutionalParams > > *)network->layers[layer].params; > > + if (conv_params->input_num != cur_channels){ > > + return DNN_ERROR; > > + } > > + cur_channels = conv_params->output_num; > > + > > + if (conv_params->padding_method == VALID) { > > + int pad_size = (conv_params->kernel_size - 1) * > > conv_params->dilation; > > + cur_height -= pad_size; > > + cur_width -= pad_size; > > + } > > + break; > > + case DEPTH_TO_SPACE: > > + depth_to_space_params = (DepthToSpaceParams > > *)network->layers[layer].params; > > + if (cur_channels % (depth_to_space_params->block_size * > > depth_to_space_params->block_size) != 0){ > > + return DNN_ERROR; > > + } > > + cur_channels = cur_channels / > > (depth_to_space_params->block_size * depth_to_space_params->block_size); > > + cur_height *= depth_to_space_params->block_size; > > + cur_width *= depth_to_space_params->block_size; > > + break; > > + default: > > + return DNN_ERROR; > > + } > > + if (network->layers[layer].output){ > > + av_freep(&network->layers[layer].output); > > + } > > + > > + if (cur_height <= 0 || cur_width <= 0) > > + return DNN_ERROR; > > + > > + network->layers[layer].output = av_malloc(cur_height * cur_width * > > cur_channels * sizeof(float)); > > + if (!network->layers[layer].output){ > > + return DNN_ERROR; > > + } > > + } > > + > > + return DNN_SUCCESS; > > +} > > + > > +// Loads model and its parameters that are stored in a binary file with > > following structure: > > +// layers_num,layer_type,layer_parameterss,layer_type,layer_parameters... > > +// For CONV layer: activation_function, input_num, output_num, > > kernel_size, kernel, biases > > +// For DEPTH_TO_SPACE layer: block_size > > +DNNModel *ff_dnn_load_model_native(const char *model_filename) > > +{ > > + DNNModel *model = NULL; > > + ConvolutionalNetwork *network = NULL; > > + AVIOContext *model_file_context; > > + int file_size, dnn_size, kernel_size, i; > > + int32_t layer; > > + DNNLayerType layer_type; > > + ConvolutionalParams *conv_params; > > + DepthToSpaceParams *depth_to_space_params; > > + > > + model = av_malloc(sizeof(DNNModel)); > > + if (!model){ > > + return NULL; > > + } > > + > > + if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < > > 0){ > > + av_freep(&model); > > + return NULL; > > + } > > + file_size = avio_size(model_file_context); > > + > > + network = av_malloc(sizeof(ConvolutionalNetwork)); > > + if (!network){ > > + avio_closep(&model_file_context); > > + av_freep(&model); > > + return NULL; > > + } > > + model->model = (void *)network; > > + > > + network->layers_num = 1 + (int32_t)avio_rl32(model_file_context); > > + dnn_size = 4; > > + > > + network->layers = av_malloc(network->layers_num * sizeof(Layer)); > > + if (!network->layers){ > > + av_freep(&network); > > + avio_closep(&model_file_context); > > + av_freep(&model); > > + return NULL; > > + } > > + > > + for (layer = 0; layer < network->layers_num; ++layer){ > > + network->layers[layer].output = NULL; > > + network->layers[layer].params = NULL; > > + } > > + network->layers[0].type = INPUT; > > + network->layers[0].params = av_malloc(sizeof(InputParams)); > > + if (!network->layers[0].params){ > > + avio_closep(&model_file_context); > > + ff_dnn_free_model_native(&model); > > + return NULL; > > + } > > + > > + for (layer = 1; layer < network->layers_num; ++layer){ > > + layer_type = (int32_t)avio_rl32(model_file_context); > > + dnn_size += 4; > > + switch (layer_type){ > > + case CONV: > > + conv_params = av_malloc(sizeof(ConvolutionalParams)); > > + if (!conv_params){ > > + avio_closep(&model_file_context); > > + ff_dnn_free_model_native(&model); > > + return NULL; > > + } > > + conv_params->dilation = (int32_t)avio_rl32(model_file_context); > > + conv_params->padding_method = > > (int32_t)avio_rl32(model_file_context); > > + conv_params->activation = > > (int32_t)avio_rl32(model_file_context); > > + conv_params->input_num = > > (int32_t)avio_rl32(model_file_context); > > + conv_params->output_num = > > (int32_t)avio_rl32(model_file_context); > > + conv_params->kernel_size = > > (int32_t)avio_rl32(model_file_context); > > + kernel_size = conv_params->input_num * conv_params->output_num > > * > > + conv_params->kernel_size * > > conv_params->kernel_size; > > + dnn_size += 24 + (kernel_size + conv_params->output_num << 2); > > + if (dnn_size > file_size || conv_params->input_num <= 0 || > > + conv_params->output_num <= 0 || conv_params->kernel_size > > <= 0){ > > + avio_closep(&model_file_context); > > + ff_dnn_free_model_native(&model); > > + return NULL; > > + } > > + conv_params->kernel = av_malloc(kernel_size * sizeof(float)); > > + conv_params->biases = av_malloc(conv_params->output_num * > > sizeof(float)); > > + if (!conv_params->kernel || !conv_params->biases){ > > + avio_closep(&model_file_context); > > + ff_dnn_free_model_native(&model); > > + return NULL; > > + } > > + for (i = 0; i < kernel_size; ++i){ > > + conv_params->kernel[i] = > > av_int2float(avio_rl32(model_file_context)); > > + } > > + for (i = 0; i < conv_params->output_num; ++i){ > > + conv_params->biases[i] = > > av_int2float(avio_rl32(model_file_context)); > > + } > > + network->layers[layer].type = CONV; > > + network->layers[layer].params = conv_params; > > + break; > > + case DEPTH_TO_SPACE: > > + depth_to_space_params = av_malloc(sizeof(DepthToSpaceParams)); > > + if (!depth_to_space_params){ > > + avio_closep(&model_file_context); > > + ff_dnn_free_model_native(&model); > > + return NULL; > > + } > > + depth_to_space_params->block_size = > > (int32_t)avio_rl32(model_file_context); > > + dnn_size += 4; > > + network->layers[layer].type = DEPTH_TO_SPACE; > > + network->layers[layer].params = depth_to_space_params; > > + break; > > + default: > > + avio_closep(&model_file_context); > > + ff_dnn_free_model_native(&model); > > + return NULL; > > + } > > + } > > + > > + avio_closep(&model_file_context); > > + > > + if (dnn_size != file_size){ > > + ff_dnn_free_model_native(&model); > > + return NULL; > > + } > > + > > + model->set_input_output = &set_input_output_native; > > + > > + return model; > > +} > > + > > +#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x))) > > + > > +static void convolve(const float *input, float *output, const > > ConvolutionalParams *conv_params, int width, int height) > > +{ > > + int radius = conv_params->kernel_size >> 1; > > + int src_linesize = width * conv_params->input_num; > > + int filter_linesize = conv_params->kernel_size * > > conv_params->input_num; > > + int filter_size = conv_params->kernel_size * filter_linesize; > > + int pad_size = (conv_params->padding_method == VALID) ? > > (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0; > > + > > + for (int y = pad_size; y < height - pad_size; ++y) { > > + for (int x = pad_size; x < width - pad_size; ++x) { > > + for (int n_filter = 0; n_filter < conv_params->output_num; > > ++n_filter) { > > + output[n_filter] = conv_params->biases[n_filter]; > > + > > + for (int ch = 0; ch < conv_params->input_num; ++ch) { > > + for (int kernel_y = 0; kernel_y < > > conv_params->kernel_size; ++kernel_y) { > > + for (int kernel_x = 0; kernel_x < > > conv_params->kernel_size; ++kernel_x) { > > + float input_pel; > > + if (conv_params->padding_method == > > SAME_CLAMP_TO_EDGE) { > > + int y_pos = CLAMP_TO_EDGE(y + (kernel_y - > > radius) * conv_params->dilation, height); > > + int x_pos = CLAMP_TO_EDGE(x + (kernel_x - > > radius) * conv_params->dilation, width); > > + input_pel = input[y_pos * src_linesize + > > x_pos * conv_params->input_num + ch]; > > + } else { > > + int y_pos = y + (kernel_y - radius) * > > conv_params->dilation; > > + int x_pos = x + (kernel_x - radius) * > > conv_params->dilation; > > + input_pel = (x_pos < 0 || x_pos >= width > > || y_pos < 0 || y_pos >= height) ? 0.0 : > > + input[y_pos * > > src_linesize + x_pos * conv_params->input_num + ch]; > > + } > > + > > + > > + output[n_filter] += input_pel * > > conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize + > > + > > kernel_x * conv_params->input_num + ch]; > > + } > > + } > > + } > > + switch (conv_params->activation){ > > + case RELU: > > + output[n_filter] = FFMAX(output[n_filter], 0.0); > > + break; > > + case TANH: > > + output[n_filter] = 2.0f / (1.0f + exp(-2.0f * > > output[n_filter])) - 1.0f; > > + break; > > + case SIGMOID: > > + output[n_filter] = 1.0f / (1.0f + > > exp(-output[n_filter])); > > + break; > > + case NONE: > > + break; > > + case LEAKY_RELU: > > + output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 > > * FFMIN(output[n_filter], 0.0); > > + } > > + } > > + output += conv_params->output_num; > > + } > > + } > > +} > > + > > +static void depth_to_space(const float *input, float *output, int > > block_size, int width, int height, int channels) > > +{ > > + int y, x, by, bx, ch; > > + int new_channels = channels / (block_size * block_size); > > + int output_linesize = width * channels; > > + int by_linesize = output_linesize / block_size; > > + int x_linesize = new_channels * block_size; > > + > > + for (y = 0; y < height; ++y){ > > + for (x = 0; x < width; ++x){ > > + for (by = 0; by < block_size; ++by){ > > + for (bx = 0; bx < block_size; ++bx){ > > + for (ch = 0; ch < new_channels; ++ch){ > > + output[by * by_linesize + x * x_linesize + bx * > > new_channels + ch] = input[ch]; > > + } > > + input += new_channels; > > + } > > + } > > + } > > + output += output_linesize; > > + } > > +} > > + > > +DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData > > *outputs, uint32_t nb_output) > > +{ > > + ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model; > > + int cur_width, cur_height, cur_channels; > > + int32_t layer; > > + InputParams *input_params; > > + ConvolutionalParams *conv_params; > > + DepthToSpaceParams *depth_to_space_params; > > + > > + if (network->layers_num <= 0 || network->layers[0].type != INPUT || > > !network->layers[0].output){ > > + return DNN_ERROR; > > + } > > + else{ > > + input_params = (InputParams *)network->layers[0].params; > > + cur_width = input_params->width; > > + cur_height = input_params->height; > > + cur_channels = input_params->channels; > > + } > > + > > + for (layer = 1; layer < network->layers_num; ++layer){ > > + if (!network->layers[layer].output){ > > + return DNN_ERROR; > > + } > > + switch (network->layers[layer].type){ > > + case CONV: > > + conv_params = (ConvolutionalParams > > *)network->layers[layer].params; > > + convolve(network->layers[layer - 1].output, > > network->layers[layer].output, conv_params, cur_width, cur_height); > > + cur_channels = conv_params->output_num; > > + if (conv_params->padding_method == VALID) { > > + int pad_size = (conv_params->kernel_size - 1) * > > conv_params->dilation; > > + cur_height -= pad_size; > > + cur_width -= pad_size; > > + } > > + break; > > + case DEPTH_TO_SPACE: > > + depth_to_space_params = (DepthToSpaceParams > > *)network->layers[layer].params; > > + depth_to_space(network->layers[layer - 1].output, > > network->layers[layer].output, > > + depth_to_space_params->block_size, cur_width, > > cur_height, cur_channels); > > + cur_height *= depth_to_space_params->block_size; > > + cur_width *= depth_to_space_params->block_size; > > + cur_channels /= depth_to_space_params->block_size * > > depth_to_space_params->block_size; > > + break; > > + case INPUT: > > + return DNN_ERROR; > > + } > > + } > > + > > + // native mode does not support multiple outputs yet > > + if (nb_output > 1) > > + return DNN_ERROR; > > + outputs[0].data = network->layers[network->layers_num - 1].output; > > + outputs[0].height = cur_height; > > + outputs[0].width = cur_width; > > + outputs[0].channels = cur_channels; > > + > > + return DNN_SUCCESS; > > +} > > + > > +void ff_dnn_free_model_native(DNNModel **model) > > +{ > > + ConvolutionalNetwork *network; > > + ConvolutionalParams *conv_params; > > + int32_t layer; > > + > > + if (*model) > > + { > > + network = (ConvolutionalNetwork *)(*model)->model; > > + for (layer = 0; layer < network->layers_num; ++layer){ > > + av_freep(&network->layers[layer].output); > > + if (network->layers[layer].type == CONV){ > > + conv_params = (ConvolutionalParams > > *)network->layers[layer].params; > > + av_freep(&conv_params->kernel); > > + av_freep(&conv_params->biases); > > + } > > + av_freep(&network->layers[layer].params); > > + } > > + av_freep(&network->layers); > > + av_freep(&network); > > + av_freep(model); > > + } > > +} > > diff --git a/libavfilter/dnn/dnn_backend_native.h > > b/libavfilter/dnn/dnn_backend_native.h > > new file mode 100644 > > index 0000000..532103c > > --- /dev/null > > +++ b/libavfilter/dnn/dnn_backend_native.h > > @@ -0,0 +1,74 @@ > > +/* > > + * Copyright (c) 2018 Sergey Lavrushkin > > + * > > + * This file is part of FFmpeg. > > + * > > + * FFmpeg is free software; you can redistribute it and/or > > + * modify it under the terms of the GNU Lesser General Public > > + * License as published by the Free Software Foundation; either > > + * version 2.1 of the License, or (at your option) any later version. > > + * > > + * FFmpeg is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > > + * Lesser General Public License for more details. > > + * > > + * You should have received a copy of the GNU Lesser General Public > > + * License along with FFmpeg; if not, write to the Free Software > > + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA > > 02110-1301 USA > > + */ > > + > > +/** > > + * @file > > + * DNN inference functions interface for native backend. > > + */ > > + > > + > > +#ifndef AVFILTER_DNN_BACKEND_NATIVE_H > > +#define AVFILTER_DNN_BACKEND_NATIVE_H > > + > > +#include "../dnn_interface.h" > > +#include "libavformat/avio.h" > > + > > +typedef enum {INPUT, CONV, DEPTH_TO_SPACE} DNNLayerType; > > + > > +typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc; > > + > > +typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNConvPaddingParam; > > + > > +typedef struct Layer{ > > + DNNLayerType type; > > + float *output; > > + void *params; > > +} Layer; > > + > > +typedef struct ConvolutionalParams{ > > + int32_t input_num, output_num, kernel_size; > > + DNNActivationFunc activation; > > + DNNConvPaddingParam padding_method; > > + int32_t dilation; > > + float *kernel; > > + float *biases; > > +} ConvolutionalParams; > > + > > +typedef struct InputParams{ > > + int height, width, channels; > > +} InputParams; > > + > > +typedef struct DepthToSpaceParams{ > > + int block_size; > > +} DepthToSpaceParams; > > + > > +// Represents simple feed-forward convolutional network. > > +typedef struct ConvolutionalNetwork{ > > + Layer *layers; > > + int32_t layers_num; > > +} ConvolutionalNetwork; > > + > > +DNNModel *ff_dnn_load_model_native(const char *model_filename); > > + > > +DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData > > *outputs, uint32_t nb_output); > > + > > +void ff_dnn_free_model_native(DNNModel **model); > > + > > +#endif > > diff --git a/libavfilter/dnn/dnn_backend_tf.c > > b/libavfilter/dnn/dnn_backend_tf.c > > new file mode 100644 > > index 0000000..ba959ae > > --- /dev/null > > +++ b/libavfilter/dnn/dnn_backend_tf.c > > @@ -0,0 +1,603 @@ > > +/* > > + * Copyright (c) 2018 Sergey Lavrushkin > > + * > > + * This file is part of FFmpeg. > > + * > > + * FFmpeg is free software; you can redistribute it and/or > > + * modify it under the terms of the GNU Lesser General Public > > + * License as published by the Free Software Foundation; either > > + * version 2.1 of the License, or (at your option) any later version. > > + * > > + * FFmpeg is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > > + * Lesser General Public License for more details. > > + * > > + * You should have received a copy of the GNU Lesser General Public > > + * License along with FFmpeg; if not, write to the Free Software > > + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA > > 02110-1301 USA > > + */ > > + > > +/** > > + * @file > > + * DNN tensorflow backend implementation. > > + */ > > + > > +#include "dnn_backend_tf.h" > > +#include "dnn_backend_native.h" > > +#include "libavformat/avio.h" > > +#include "libavutil/avassert.h" > > + > > +#include <tensorflow/c/c_api.h> > > + > > +typedef struct TFModel{ > > + TF_Graph *graph; > > + TF_Session *session; > > + TF_Status *status; > > + TF_Output input; > > + TF_Tensor *input_tensor; > > + TF_Output *outputs; > > + TF_Tensor **output_tensors; > > + uint32_t nb_output; > > +} TFModel; > > + > > +static void free_buffer(void *data, size_t length) > > +{ > > + av_freep(&data); > > +} > > + > > +static TF_Buffer *read_graph(const char *model_filename) > > +{ > > + TF_Buffer *graph_buf; > > + unsigned char *graph_data = NULL; > > + AVIOContext *model_file_context; > > + long size, bytes_read; > > + > > + if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < > > 0){ > > + return NULL; > > + } > > + > > + size = avio_size(model_file_context); > > + > > + graph_data = av_malloc(size); > > + if (!graph_data){ > > + avio_closep(&model_file_context); > > + return NULL; > > + } > > + bytes_read = avio_read(model_file_context, graph_data, size); > > + avio_closep(&model_file_context); > > + if (bytes_read != size){ > > + av_freep(&graph_data); > > + return NULL; > > + } > > + > > + graph_buf = TF_NewBuffer(); > > + graph_buf->data = (void *)graph_data; > > + graph_buf->length = size; > > + graph_buf->data_deallocator = free_buffer; > > + > > + return graph_buf; > > +} > > + > > +static TF_Tensor *allocate_input_tensor(const DNNInputData *input) > > +{ > > + TF_DataType dt; > > + size_t size; > > + int64_t input_dims[] = {1, input->height, input->width, > > input->channels}; > > + switch (input->dt) { > > + case DNN_FLOAT: > > + dt = TF_FLOAT; > > + size = sizeof(float); > > + break; > > + case DNN_UINT8: > > + dt = TF_UINT8; > > + size = sizeof(char); > > + break; > > + default: > > + av_assert0(!"should not reach here"); > > + } > > + > > + return TF_AllocateTensor(dt, input_dims, 4, > > + input_dims[1] * input_dims[2] * input_dims[3] > > * size); > > +} > > + > > +static DNNReturnType set_input_output_tf(void *model, DNNInputData *input, > > const char *input_name, const char **output_names, uint32_t nb_output) > > +{ > > + TFModel *tf_model = (TFModel *)model; > > + TF_SessionOptions *sess_opts; > > + const TF_Operation *init_op = TF_GraphOperationByName(tf_model->graph, > > "init"); > > + > > + // Input operation > > + tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, > > input_name); > > + if (!tf_model->input.oper){ > > + return DNN_ERROR; > > + } > > + tf_model->input.index = 0; > > + if (tf_model->input_tensor){ > > + TF_DeleteTensor(tf_model->input_tensor); > > + } > > + tf_model->input_tensor = allocate_input_tensor(input); > > + if (!tf_model->input_tensor){ > > + return DNN_ERROR; > > + } > > + input->data = (float *)TF_TensorData(tf_model->input_tensor); > > + > > + // Output operation > > + if (nb_output == 0) > > + return DNN_ERROR; > > + > > + av_freep(&tf_model->outputs); > > + tf_model->outputs = av_malloc_array(nb_output, > > sizeof(*tf_model->outputs)); > > + if (!tf_model->outputs) > > + return DNN_ERROR; > > + for (int i = 0; i < nb_output; ++i) { > > + tf_model->outputs[i].oper = > > TF_GraphOperationByName(tf_model->graph, output_names[i]); > > + if (!tf_model->outputs[i].oper){ > > + av_freep(&tf_model->outputs); > > + return DNN_ERROR; > > + } > > + tf_model->outputs[i].index = 0; > > + } > > + > > + if (tf_model->output_tensors) { > > + for (uint32_t i = 0; i < tf_model->nb_output; ++i) { > > + if (tf_model->output_tensors[i]) { > > + TF_DeleteTensor(tf_model->output_tensors[i]); > > + tf_model->output_tensors[i] = NULL; > > + } > > + } > > + } > > + av_freep(&tf_model->output_tensors); > > + tf_model->output_tensors = av_mallocz_array(nb_output, > > sizeof(*tf_model->output_tensors)); > > + if (!tf_model->output_tensors) { > > + av_freep(&tf_model->outputs); > > + return DNN_ERROR; > > + } > > + > > + tf_model->nb_output = nb_output; > > + > > + if (tf_model->session){ > > + TF_CloseSession(tf_model->session, tf_model->status); > > + TF_DeleteSession(tf_model->session, tf_model->status); > > + } > > + > > + sess_opts = TF_NewSessionOptions(); > > + tf_model->session = TF_NewSession(tf_model->graph, sess_opts, > > tf_model->status); > > + TF_DeleteSessionOptions(sess_opts); > > + if (TF_GetCode(tf_model->status) != TF_OK) > > + { > > + return DNN_ERROR; > > + } > > + > > + // Run initialization operation with name "init" if it is present in > > graph > > + if (init_op){ > > + TF_SessionRun(tf_model->session, NULL, > > + NULL, NULL, 0, > > + NULL, NULL, 0, > > + &init_op, 1, NULL, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK) > > + { > > + return DNN_ERROR; > > + } > > + } > > + > > + return DNN_SUCCESS; > > +} > > + > > +static DNNReturnType load_tf_model(TFModel *tf_model, const char > > *model_filename) > > +{ > > + TF_Buffer *graph_def; > > + TF_ImportGraphDefOptions *graph_opts; > > + > > + graph_def = read_graph(model_filename); > > + if (!graph_def){ > > + return DNN_ERROR; > > + } > > + tf_model->graph = TF_NewGraph(); > > + tf_model->status = TF_NewStatus(); > > + graph_opts = TF_NewImportGraphDefOptions(); > > + TF_GraphImportGraphDef(tf_model->graph, graph_def, graph_opts, > > tf_model->status); > > + TF_DeleteImportGraphDefOptions(graph_opts); > > + TF_DeleteBuffer(graph_def); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + TF_DeleteGraph(tf_model->graph); > > + TF_DeleteStatus(tf_model->status); > > + return DNN_ERROR; > > + } > > + > > + return DNN_SUCCESS; > > +} > > + > > +#define NAME_BUFFER_SIZE 256 > > + > > +static DNNReturnType add_conv_layer(TFModel *tf_model, TF_Operation > > *transpose_op, TF_Operation **cur_op, > > + ConvolutionalParams* params, const int > > layer) > > +{ > > + TF_Operation *op; > > + TF_OperationDescription *op_desc; > > + TF_Output input; > > + int64_t strides[] = {1, 1, 1, 1}; > > + TF_Tensor *tensor; > > + int64_t dims[4]; > > + int dims_len; > > + char name_buffer[NAME_BUFFER_SIZE]; > > + int32_t size; > > + > > + size = params->input_num * params->output_num * params->kernel_size * > > params->kernel_size; > > + input.index = 0; > > + > > + snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_kernel%d", layer); > > + op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); > > + TF_SetAttrType(op_desc, "dtype", TF_FLOAT); > > + dims[0] = params->output_num; > > + dims[1] = params->kernel_size; > > + dims[2] = params->kernel_size; > > + dims[3] = params->input_num; > > + dims_len = 4; > > + tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, size * > > sizeof(float)); > > + memcpy(TF_TensorData(tensor), params->kernel, size * sizeof(float)); > > + TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + return DNN_ERROR; > > + } > > + op = TF_FinishOperation(op_desc, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + return DNN_ERROR; > > + } > > + > > + snprintf(name_buffer, NAME_BUFFER_SIZE, "transpose%d", layer); > > + op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer); > > + input.oper = op; > > + TF_AddInput(op_desc, input); > > + input.oper = transpose_op; > > + TF_AddInput(op_desc, input); > > + TF_SetAttrType(op_desc, "T", TF_FLOAT); > > + TF_SetAttrType(op_desc, "Tperm", TF_INT32); > > + op = TF_FinishOperation(op_desc, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + return DNN_ERROR; > > + } > > + > > + snprintf(name_buffer, NAME_BUFFER_SIZE, "conv2d%d", layer); > > + op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer); > > + input.oper = *cur_op; > > + TF_AddInput(op_desc, input); > > + input.oper = op; > > + TF_AddInput(op_desc, input); > > + TF_SetAttrType(op_desc, "T", TF_FLOAT); > > + TF_SetAttrIntList(op_desc, "strides", strides, 4); > > + TF_SetAttrString(op_desc, "padding", "VALID", 5); > > + *cur_op = TF_FinishOperation(op_desc, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + return DNN_ERROR; > > + } > > + > > + snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_biases%d", layer); > > + op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); > > + TF_SetAttrType(op_desc, "dtype", TF_FLOAT); > > + dims[0] = params->output_num; > > + dims_len = 1; > > + tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, > > params->output_num * sizeof(float)); > > + memcpy(TF_TensorData(tensor), params->biases, params->output_num * > > sizeof(float)); > > + TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + return DNN_ERROR; > > + } > > + op = TF_FinishOperation(op_desc, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + return DNN_ERROR; > > + } > > + > > + snprintf(name_buffer, NAME_BUFFER_SIZE, "bias_add%d", layer); > > + op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer); > > + input.oper = *cur_op; > > + TF_AddInput(op_desc, input); > > + input.oper = op; > > + TF_AddInput(op_desc, input); > > + TF_SetAttrType(op_desc, "T", TF_FLOAT); > > + *cur_op = TF_FinishOperation(op_desc, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + return DNN_ERROR; > > + } > > + > > + snprintf(name_buffer, NAME_BUFFER_SIZE, "activation%d", layer); > > + switch (params->activation){ > > + case RELU: > > + op_desc = TF_NewOperation(tf_model->graph, "Relu", name_buffer); > > + break; > > + case TANH: > > + op_desc = TF_NewOperation(tf_model->graph, "Tanh", name_buffer); > > + break; > > + case SIGMOID: > > + op_desc = TF_NewOperation(tf_model->graph, "Sigmoid", name_buffer); > > + break; > > + default: > > + return DNN_ERROR; > > + } > > + input.oper = *cur_op; > > + TF_AddInput(op_desc, input); > > + TF_SetAttrType(op_desc, "T", TF_FLOAT); > > + *cur_op = TF_FinishOperation(op_desc, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + return DNN_ERROR; > > + } > > + > > + return DNN_SUCCESS; > > +} > > + > > +static DNNReturnType add_depth_to_space_layer(TFModel *tf_model, > > TF_Operation **cur_op, > > + DepthToSpaceParams *params, > > const int layer) > > +{ > > + TF_OperationDescription *op_desc; > > + TF_Output input; > > + char name_buffer[NAME_BUFFER_SIZE]; > > + > > + snprintf(name_buffer, NAME_BUFFER_SIZE, "depth_to_space%d", layer); > > + op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", > > name_buffer); > > + input.oper = *cur_op; > > + input.index = 0; > > + TF_AddInput(op_desc, input); > > + TF_SetAttrType(op_desc, "T", TF_FLOAT); > > + TF_SetAttrInt(op_desc, "block_size", params->block_size); > > + *cur_op = TF_FinishOperation(op_desc, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + return DNN_ERROR; > > + } > > + > > + return DNN_SUCCESS; > > +} > > + > > +static int calculate_pad(const ConvolutionalNetwork *conv_network) > > +{ > > + ConvolutionalParams *params; > > + int32_t layer; > > + int pad = 0; > > + > > + for (layer = 0; layer < conv_network->layers_num; ++layer){ > > + if (conv_network->layers[layer].type == CONV){ > > + params = (ConvolutionalParams > > *)conv_network->layers[layer].params; > > + pad += params->kernel_size >> 1; > > + } > > + } > > + > > + return pad; > > +} > > + > > +static DNNReturnType add_pad_op(TFModel *tf_model, TF_Operation **cur_op, > > const int32_t pad) > > +{ > > + TF_Operation *op; > > + TF_Tensor *tensor; > > + TF_OperationDescription *op_desc; > > + TF_Output input; > > + int32_t *pads; > > + int64_t pads_shape[] = {4, 2}; > > + > > + input.index = 0; > > + > > + op_desc = TF_NewOperation(tf_model->graph, "Const", "pads"); > > + TF_SetAttrType(op_desc, "dtype", TF_INT32); > > + tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * > > sizeof(int32_t)); > > + pads = (int32_t *)TF_TensorData(tensor); > > + pads[0] = 0; pads[1] = 0; > > + pads[2] = pad; pads[3] = pad; > > + pads[4] = pad; pads[5] = pad; > > + pads[6] = 0; pads[7] = 0; > > + TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + return DNN_ERROR; > > + } > > + op = TF_FinishOperation(op_desc, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + return DNN_ERROR; > > + } > > + > > + op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad"); > > + input.oper = *cur_op; > > + TF_AddInput(op_desc, input); > > + input.oper = op; > > + TF_AddInput(op_desc, input); > > + TF_SetAttrType(op_desc, "T", TF_FLOAT); > > + TF_SetAttrType(op_desc, "Tpaddings", TF_INT32); > > + TF_SetAttrString(op_desc, "mode", "SYMMETRIC", 9); > > + *cur_op = TF_FinishOperation(op_desc, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + return DNN_ERROR; > > + } > > + > > + return DNN_SUCCESS; > > +} > > + > > +static DNNReturnType load_native_model(TFModel *tf_model, const char > > *model_filename) > > +{ > > + int32_t layer; > > + TF_OperationDescription *op_desc; > > + TF_Operation *op; > > + TF_Operation *transpose_op; > > + TF_Tensor *tensor; > > + TF_Output input; > > + int32_t *transpose_perm; > > + int64_t transpose_perm_shape[] = {4}; > > + int64_t input_shape[] = {1, -1, -1, -1}; > > + int32_t pad; > > + DNNReturnType layer_add_res; > > + DNNModel *native_model = NULL; > > + ConvolutionalNetwork *conv_network; > > + > > + native_model = ff_dnn_load_model_native(model_filename); > > + if (!native_model){ > > + return DNN_ERROR; > > + } > > + > > + conv_network = (ConvolutionalNetwork *)native_model->model; > > + pad = calculate_pad(conv_network); > > + tf_model->graph = TF_NewGraph(); > > + tf_model->status = TF_NewStatus(); > > + > > +#define CLEANUP_ON_ERROR(tf_model) \ > > + { \ > > + TF_DeleteGraph(tf_model->graph); \ > > + TF_DeleteStatus(tf_model->status); \ > > + return DNN_ERROR; \ > > + } > > + > > + op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x"); > > + TF_SetAttrType(op_desc, "dtype", TF_FLOAT); > > + TF_SetAttrShape(op_desc, "shape", input_shape, 4); > > + op = TF_FinishOperation(op_desc, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + CLEANUP_ON_ERROR(tf_model); > > + } > > + > > + if (add_pad_op(tf_model, &op, pad) != DNN_SUCCESS){ > > + CLEANUP_ON_ERROR(tf_model); > > + } > > + > > + op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm"); > > + TF_SetAttrType(op_desc, "dtype", TF_INT32); > > + tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * > > sizeof(int32_t)); > > + transpose_perm = (int32_t *)TF_TensorData(tensor); > > + transpose_perm[0] = 1; > > + transpose_perm[1] = 2; > > + transpose_perm[2] = 3; > > + transpose_perm[3] = 0; > > + TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + CLEANUP_ON_ERROR(tf_model); > > + } > > + transpose_op = TF_FinishOperation(op_desc, tf_model->status); > > + > > + for (layer = 0; layer < conv_network->layers_num; ++layer){ > > + switch (conv_network->layers[layer].type){ > > + case INPUT: > > + layer_add_res = DNN_SUCCESS; > > + break; > > + case CONV: > > + layer_add_res = add_conv_layer(tf_model, transpose_op, &op, > > + (ConvolutionalParams > > *)conv_network->layers[layer].params, layer); > > + break; > > + case DEPTH_TO_SPACE: > > + layer_add_res = add_depth_to_space_layer(tf_model, &op, > > + (DepthToSpaceParams > > *)conv_network->layers[layer].params, layer); > > + break; > > + default: > > + CLEANUP_ON_ERROR(tf_model); > > + } > > + > > + if (layer_add_res != DNN_SUCCESS){ > > + CLEANUP_ON_ERROR(tf_model); > > + } > > + } > > + > > + op_desc = TF_NewOperation(tf_model->graph, "Identity", "y"); > > + input.oper = op; > > + TF_AddInput(op_desc, input); > > + TF_FinishOperation(op_desc, tf_model->status); > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + CLEANUP_ON_ERROR(tf_model); > > + } > > + > > + ff_dnn_free_model_native(&native_model); > > + > > + return DNN_SUCCESS; > > +} > > + > > +DNNModel *ff_dnn_load_model_tf(const char *model_filename) > > +{ > > + DNNModel *model = NULL; > > + TFModel *tf_model = NULL; > > + > > + model = av_malloc(sizeof(DNNModel)); > > + if (!model){ > > + return NULL; > > + } > > + > > + tf_model = av_mallocz(sizeof(TFModel)); > > + if (!tf_model){ > > + av_freep(&model); > > + return NULL; > > + } > > + > > + if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){ > > + if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){ > > + av_freep(&tf_model); > > + av_freep(&model); > > + > > + return NULL; > > + } > > + } > > + > > + model->model = (void *)tf_model; > > + model->set_input_output = &set_input_output_tf; > > + > > + return model; > > +} > > + > > + > > + > > +DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData > > *outputs, uint32_t nb_output) > > +{ > > + TFModel *tf_model = (TFModel *)model->model; > > + uint32_t nb = FFMIN(nb_output, tf_model->nb_output); > > + if (nb == 0) > > + return DNN_ERROR; > > + > > + av_assert0(tf_model->output_tensors); > > + for (uint32_t i = 0; i < tf_model->nb_output; ++i) { > > + if (tf_model->output_tensors[i]) { > > + TF_DeleteTensor(tf_model->output_tensors[i]); > > + tf_model->output_tensors[i] = NULL; > > + } > > + } > > + > > + TF_SessionRun(tf_model->session, NULL, > > + &tf_model->input, &tf_model->input_tensor, 1, > > + tf_model->outputs, tf_model->output_tensors, nb, > > + NULL, 0, NULL, tf_model->status); > > + > > + if (TF_GetCode(tf_model->status) != TF_OK){ > > + return DNN_ERROR; > > + } > > + > > + for (uint32_t i = 0; i < nb; ++i) { > > + outputs[i].height = TF_Dim(tf_model->output_tensors[i], 1); > > + outputs[i].width = TF_Dim(tf_model->output_tensors[i], 2); > > + outputs[i].channels = TF_Dim(tf_model->output_tensors[i], 3); > > + outputs[i].data = TF_TensorData(tf_model->output_tensors[i]); > > + } > > + > > + return DNN_SUCCESS; > > +} > > + > > +void ff_dnn_free_model_tf(DNNModel **model) > > +{ > > + TFModel *tf_model; > > + > > + if (*model){ > > + tf_model = (TFModel *)(*model)->model; > > + if (tf_model->graph){ > > + TF_DeleteGraph(tf_model->graph); > > + } > > + if (tf_model->session){ > > + TF_CloseSession(tf_model->session, tf_model->status); > > + TF_DeleteSession(tf_model->session, tf_model->status); > > + } > > + if (tf_model->status){ > > + TF_DeleteStatus(tf_model->status); > > + } > > + if (tf_model->input_tensor){ > > + TF_DeleteTensor(tf_model->input_tensor); > > + } > > + if (tf_model->output_tensors) { > > + for (uint32_t i = 0; i < tf_model->nb_output; ++i) { > > + if (tf_model->output_tensors[i]) { > > + TF_DeleteTensor(tf_model->output_tensors[i]); > > + tf_model->output_tensors[i] = NULL; > > + } > > + } > > + } > > + av_freep(&tf_model->outputs); > > + av_freep(&tf_model->output_tensors); > > + av_freep(&tf_model); > > + av_freep(model); > > + } > > +} > > diff --git a/libavfilter/dnn/dnn_backend_tf.h > > b/libavfilter/dnn/dnn_backend_tf.h > > new file mode 100644 > > index 0000000..bb1c85f > > --- /dev/null > > +++ b/libavfilter/dnn/dnn_backend_tf.h > > @@ -0,0 +1,38 @@ > > +/* > > + * Copyright (c) 2018 Sergey Lavrushkin > > + * > > + * This file is part of FFmpeg. > > + * > > + * FFmpeg is free software; you can redistribute it and/or > > + * modify it under the terms of the GNU Lesser General Public > > + * License as published by the Free Software Foundation; either > > + * version 2.1 of the License, or (at your option) any later version. > > + * > > + * FFmpeg is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > > + * Lesser General Public License for more details. > > + * > > + * You should have received a copy of the GNU Lesser General Public > > + * License along with FFmpeg; if not, write to the Free Software > > + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA > > 02110-1301 USA > > + */ > > + > > +/** > > + * @file > > + * DNN inference functions interface for TensorFlow backend. > > + */ > > + > > + > > +#ifndef AVFILTER_DNN_BACKEND_TF_H > > +#define AVFILTER_DNN_BACKEND_TF_H > > + > > +#include "../dnn_interface.h" > > + > > +DNNModel *ff_dnn_load_model_tf(const char *model_filename); > > + > > +DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData > > *outputs, uint32_t nb_output); > > + > > +void ff_dnn_free_model_tf(DNNModel **model); > > + > > +#endif > > diff --git a/libavfilter/dnn/dnn_interface.c > > b/libavfilter/dnn/dnn_interface.c > > new file mode 100644 > > index 0000000..62da55f > > --- /dev/null > > +++ b/libavfilter/dnn/dnn_interface.c > > @@ -0,0 +1,63 @@ > > +/* > > + * Copyright (c) 2018 Sergey Lavrushkin > > + * > > + * This file is part of FFmpeg. > > + * > > + * FFmpeg is free software; you can redistribute it and/or > > + * modify it under the terms of the GNU Lesser General Public > > + * License as published by the Free Software Foundation; either > > + * version 2.1 of the License, or (at your option) any later version. > > + * > > + * FFmpeg is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > > + * Lesser General Public License for more details. > > + * > > + * You should have received a copy of the GNU Lesser General Public > > + * License along with FFmpeg; if not, write to the Free Software > > + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA > > 02110-1301 USA > > + */ > > + > > +/** > > + * @file > > + * Implements DNN module initialization with specified backend. > > + */ > > + > > +#include "../dnn_interface.h" > > +#include "dnn_backend_native.h" > > +#include "dnn_backend_tf.h" > > +#include "libavutil/mem.h" > > + > > +DNNModule *ff_get_dnn_module(DNNBackendType backend_type) > > +{ > > + DNNModule *dnn_module; > > + > > + dnn_module = av_malloc(sizeof(DNNModule)); > > + if(!dnn_module){ > > + return NULL; > > + } > > + > > + switch(backend_type){ > > + case DNN_NATIVE: > > + dnn_module->load_model = &ff_dnn_load_model_native; > > + dnn_module->execute_model = &ff_dnn_execute_model_native; > > + dnn_module->free_model = &ff_dnn_free_model_native; > > + break; > > + case DNN_TF: > > + #if (CONFIG_LIBTENSORFLOW == 1) > > + dnn_module->load_model = &ff_dnn_load_model_tf; > > + dnn_module->execute_model = &ff_dnn_execute_model_tf; > > + dnn_module->free_model = &ff_dnn_free_model_tf; > > + #else > > + av_freep(&dnn_module); > > + return NULL; > > + #endif > > + break; > > + default: > > + av_log(NULL, AV_LOG_ERROR, "Module backend_type is not native or > > tensorflow\n"); > > + av_freep(&dnn_module); > > + return NULL; > > + } > > + > > + return dnn_module; > > +} > > diff --git a/libavfilter/dnn_backend_native.c > > b/libavfilter/dnn_backend_native.c > > deleted file mode 100644 > > index 82e900b..0000000 > > --- a/libavfilter/dnn_backend_native.c > > +++ /dev/null > > @@ -1,389 +0,0 @@ > > -/* > > - * Copyright (c) 2018 Sergey Lavrushkin > > - * > > - * This file is part of FFmpeg. > > - * > > - * FFmpeg is free software; you can redistribute it and/or > > - * modify it under the terms of the GNU Lesser General Public > > - * License as published by the Free Software Foundation; either > > - * version 2.1 of the License, or (at your option) any later version. > > - * > > - * FFmpeg is distributed in the hope that it will be useful, > > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > > - * Lesser General Public License for more details. > > - * > > - * You should have received a copy of the GNU Lesser General Public > > - * License along with FFmpeg; if not, write to the Free Software > > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA > > 02110-1301 USA > > - */ > > - > > -/** > > - * @file > > - * DNN native backend implementation. > > - */ > > - > > -#include "dnn_backend_native.h" > > -#include "libavutil/avassert.h" > > - > > -static DNNReturnType set_input_output_native(void *model, DNNInputData > > *input, const char *input_name, const char **output_names, uint32_t > > nb_output) > > -{ > > - ConvolutionalNetwork *network = (ConvolutionalNetwork *)model; > > - InputParams *input_params; > > - ConvolutionalParams *conv_params; > > - DepthToSpaceParams *depth_to_space_params; > > - int cur_width, cur_height, cur_channels; > > - int32_t layer; > > - > > - if (network->layers_num <= 0 || network->layers[0].type != INPUT){ > > - return DNN_ERROR; > > - } > > - else{ > > - input_params = (InputParams *)network->layers[0].params; > > - input_params->width = cur_width = input->width; > > - input_params->height = cur_height = input->height; > > - input_params->channels = cur_channels = input->channels; > > - if (input->data){ > > - av_freep(&input->data); > > - } > > - av_assert0(input->dt == DNN_FLOAT); > > - network->layers[0].output = input->data = av_malloc(cur_height * > > cur_width * cur_channels * sizeof(float)); > > - if (!network->layers[0].output){ > > - return DNN_ERROR; > > - } > > - } > > - > > - for (layer = 1; layer < network->layers_num; ++layer){ > > - switch (network->layers[layer].type){ > > - case CONV: > > - conv_params = (ConvolutionalParams > > *)network->layers[layer].params; > > - if (conv_params->input_num != cur_channels){ > > - return DNN_ERROR; > > - } > > - cur_channels = conv_params->output_num; > > - > > - if (conv_params->padding_method == VALID) { > > - int pad_size = (conv_params->kernel_size - 1) * > > conv_params->dilation; > > - cur_height -= pad_size; > > - cur_width -= pad_size; > > - } > > - break; > > - case DEPTH_TO_SPACE: > > - depth_to_space_params = (DepthToSpaceParams > > *)network->layers[layer].params; > > - if (cur_channels % (depth_to_space_params->block_size * > > depth_to_space_params->block_size) != 0){ > > - return DNN_ERROR; > > - } > > - cur_channels = cur_channels / > > (depth_to_space_params->block_size * depth_to_space_params->block_size); > > - cur_height *= depth_to_space_params->block_size; > > - cur_width *= depth_to_space_params->block_size; > > - break; > > - default: > > - return DNN_ERROR; > > - } > > - if (network->layers[layer].output){ > > - av_freep(&network->layers[layer].output); > > - } > > - > > - if (cur_height <= 0 || cur_width <= 0) > > - return DNN_ERROR; > > - > > - network->layers[layer].output = av_malloc(cur_height * cur_width * > > cur_channels * sizeof(float)); > > - if (!network->layers[layer].output){ > > - return DNN_ERROR; > > - } > > - } > > - > > - return DNN_SUCCESS; > > -} > > - > > -// Loads model and its parameters that are stored in a binary file with > > following structure: > > -// layers_num,layer_type,layer_parameterss,layer_type,layer_parameters... > > -// For CONV layer: activation_function, input_num, output_num, > > kernel_size, kernel, biases > > -// For DEPTH_TO_SPACE layer: block_size > > -DNNModel *ff_dnn_load_model_native(const char *model_filename) > > -{ > > - DNNModel *model = NULL; > > - ConvolutionalNetwork *network = NULL; > > - AVIOContext *model_file_context; > > - int file_size, dnn_size, kernel_size, i; > > - int32_t layer; > > - DNNLayerType layer_type; > > - ConvolutionalParams *conv_params; > > - DepthToSpaceParams *depth_to_space_params; > > - > > - model = av_malloc(sizeof(DNNModel)); > > - if (!model){ > > - return NULL; > > - } > > - > > - if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < > > 0){ > > - av_freep(&model); > > - return NULL; > > - } > > - file_size = avio_size(model_file_context); > > - > > - network = av_malloc(sizeof(ConvolutionalNetwork)); > > - if (!network){ > > - avio_closep(&model_file_context); > > - av_freep(&model); > > - return NULL; > > - } > > - model->model = (void *)network; > > - > > - network->layers_num = 1 + (int32_t)avio_rl32(model_file_context); > > - dnn_size = 4; > > - > > - network->layers = av_malloc(network->layers_num * sizeof(Layer)); > > - if (!network->layers){ > > - av_freep(&network); > > - avio_closep(&model_file_context); > > - av_freep(&model); > > - return NULL; > > - } > > - > > - for (layer = 0; layer < network->layers_num; ++layer){ > > - network->layers[layer].output = NULL; > > - network->layers[layer].params = NULL; > > - } > > - network->layers[0].type = INPUT; > > - network->layers[0].params = av_malloc(sizeof(InputParams)); > > - if (!network->layers[0].params){ > > - avio_closep(&model_file_context); > > - ff_dnn_free_model_native(&model); > > - return NULL; > > - } > > - > > - for (layer = 1; layer < network->layers_num; ++layer){ > > - layer_type = (int32_t)avio_rl32(model_file_context); > > - dnn_size += 4; > > - switch (layer_type){ > > - case CONV: > > - conv_params = av_malloc(sizeof(ConvolutionalParams)); > > - if (!conv_params){ > > - avio_closep(&model_file_context); > > - ff_dnn_free_model_native(&model); > > - return NULL; > > - } > > - conv_params->dilation = (int32_t)avio_rl32(model_file_context); > > - conv_params->padding_method = > > (int32_t)avio_rl32(model_file_context); > > - conv_params->activation = > > (int32_t)avio_rl32(model_file_context); > > - conv_params->input_num = > > (int32_t)avio_rl32(model_file_context); > > - conv_params->output_num = > > (int32_t)avio_rl32(model_file_context); > > - conv_params->kernel_size = > > (int32_t)avio_rl32(model_file_context); > > - kernel_size = conv_params->input_num * conv_params->output_num > > * > > - conv_params->kernel_size * > > conv_params->kernel_size; > > - dnn_size += 24 + (kernel_size + conv_params->output_num << 2); > > - if (dnn_size > file_size || conv_params->input_num <= 0 || > > - conv_params->output_num <= 0 || conv_params->kernel_size > > <= 0){ > > - avio_closep(&model_file_context); > > - ff_dnn_free_model_native(&model); > > - return NULL; > > - } > > - conv_params->kernel = av_malloc(kernel_size * sizeof(float)); > > - conv_params->biases = av_malloc(conv_params->output_num * > > sizeof(float)); > > - if (!conv_params->kernel || !conv_params->biases){ > > - avio_closep(&model_file_context); > > - ff_dnn_free_model_native(&model); > > - return NULL; > > - } > > - for (i = 0; i < kernel_size; ++i){ > > - conv_params->kernel[i] = > > av_int2float(avio_rl32(model_file_context)); > > - } > > - for (i = 0; i < conv_params->output_num; ++i){ > > - conv_params->biases[i] = > > av_int2float(avio_rl32(model_file_context)); > > - } > > - network->layers[layer].type = CONV; > > - network->layers[layer].params = conv_params; > > - break; > > - case DEPTH_TO_SPACE: > > - depth_to_space_params = av_malloc(sizeof(DepthToSpaceParams)); > > - if (!depth_to_space_params){ > > - avio_closep(&model_file_context); > > - ff_dnn_free_model_native(&model); > > - return NULL; > > - } > > - depth_to_space_params->block_size = > > (int32_t)avio_rl32(model_file_context); > > - dnn_size += 4; > > - network->layers[layer].type = DEPTH_TO_SPACE; > > - network->layers[layer].params = depth_to_space_params; > > - break; > > - default: > > - avio_closep(&model_file_context); > > - ff_dnn_free_model_native(&model); > > - return NULL; > > - } > > - } > > - > > - avio_closep(&model_file_context); > > - > > - if (dnn_size != file_size){ > > - ff_dnn_free_model_native(&model); > > - return NULL; > > - } > > - > > - model->set_input_output = &set_input_output_native; > > - > > - return model; > > -} > > - > > -#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x))) > > - > > -static void convolve(const float *input, float *output, const > > ConvolutionalParams *conv_params, int width, int height) > > -{ > > - int radius = conv_params->kernel_size >> 1; > > - int src_linesize = width * conv_params->input_num; > > - int filter_linesize = conv_params->kernel_size * > > conv_params->input_num; > > - int filter_size = conv_params->kernel_size * filter_linesize; > > - int pad_size = (conv_params->padding_method == VALID) ? > > (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0; > > - > > - for (int y = pad_size; y < height - pad_size; ++y) { > > - for (int x = pad_size; x < width - pad_size; ++x) { > > - for (int n_filter = 0; n_filter < conv_params->output_num; > > ++n_filter) { > > - output[n_filter] = conv_params->biases[n_filter]; > > - > > - for (int ch = 0; ch < conv_params->input_num; ++ch) { > > - for (int kernel_y = 0; kernel_y < > > conv_params->kernel_size; ++kernel_y) { > > - for (int kernel_x = 0; kernel_x < > > conv_params->kernel_size; ++kernel_x) { > > - float input_pel; > > - if (conv_params->padding_method == > > SAME_CLAMP_TO_EDGE) { > > - int y_pos = CLAMP_TO_EDGE(y + (kernel_y - > > radius) * conv_params->dilation, height); > > - int x_pos = CLAMP_TO_EDGE(x + (kernel_x - > > radius) * conv_params->dilation, width); > > - input_pel = input[y_pos * src_linesize + > > x_pos * conv_params->input_num + ch]; > > - } else { > > - int y_pos = y + (kernel_y - radius) * > > conv_params->dilation; > > - int x_pos = x + (kernel_x - radius) * > > conv_params->dilation; > > - input_pel = (x_pos < 0 || x_pos >= width > > || y_pos < 0 || y_pos >= height) ? 0.0 : > > - input[y_pos * > > src_linesize + x_pos * conv_params->input_num + ch]; > > - } > > - > > - > > - output[n_filter] += input_pel * > > conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize + > > - > > kernel_x * conv_params->input_num + ch]; > > - } > > - } > > - } > > - switch (conv_params->activation){ > > - case RELU: > > - output[n_filter] = FFMAX(output[n_filter], 0.0); > > - break; > > - case TANH: > > - output[n_filter] = 2.0f / (1.0f + exp(-2.0f * > > output[n_filter])) - 1.0f; > > - break; > > - case SIGMOID: > > - output[n_filter] = 1.0f / (1.0f + > > exp(-output[n_filter])); > > - break; > > - case NONE: > > - break; > > - case LEAKY_RELU: > > - output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 > > * FFMIN(output[n_filter], 0.0); > > - } > > - } > > - output += conv_params->output_num; > > - } > > - } > > -} > > - > > -static void depth_to_space(const float *input, float *output, int > > block_size, int width, int height, int channels) > > -{ > > - int y, x, by, bx, ch; > > - int new_channels = channels / (block_size * block_size); > > - int output_linesize = width * channels; > > - int by_linesize = output_linesize / block_size; > > - int x_linesize = new_channels * block_size; > > - > > - for (y = 0; y < height; ++y){ > > - for (x = 0; x < width; ++x){ > > - for (by = 0; by < block_size; ++by){ > > - for (bx = 0; bx < block_size; ++bx){ > > - for (ch = 0; ch < new_channels; ++ch){ > > - output[by * by_linesize + x * x_linesize + bx * > > new_channels + ch] = input[ch]; > > - } > > - input += new_channels; > > - } > > - } > > - } > > - output += output_linesize; > > - } > > -} > > - > > -DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData > > *outputs, uint32_t nb_output) > > -{ > > - ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model; > > - int cur_width, cur_height, cur_channels; > > - int32_t layer; > > - InputParams *input_params; > > - ConvolutionalParams *conv_params; > > - DepthToSpaceParams *depth_to_space_params; > > - > > - if (network->layers_num <= 0 || network->layers[0].type != INPUT || > > !network->layers[0].output){ > > - return DNN_ERROR; > > - } > > - else{ > > - input_params = (InputParams *)network->layers[0].params; > > - cur_width = input_params->width; > > - cur_height = input_params->height; > > - cur_channels = input_params->channels; > > - } > > - > > - for (layer = 1; layer < network->layers_num; ++layer){ > > - if (!network->layers[layer].output){ > > - return DNN_ERROR; > > - } > > - switch (network->layers[layer].type){ > > - case CONV: > > - conv_params = (ConvolutionalParams > > *)network->layers[layer].params; > > - convolve(network->layers[layer - 1].output, > > network->layers[layer].output, conv_params, cur_width, cur_height); > > - cur_channels = conv_params->output_num; > > - if (conv_params->padding_method == VALID) { > > - int pad_size = (conv_params->kernel_size - 1) * > > conv_params->dilation; > > - cur_height -= pad_size; > > - cur_width -= pad_size; > > - } > > - break; > > - case DEPTH_TO_SPACE: > > - depth_to_space_params = (DepthToSpaceParams > > *)network->layers[layer].params; > > - depth_to_space(network->layers[layer - 1].output, > > network->layers[layer].output, > > - depth_to_space_params->block_size, cur_width, > > cur_height, cur_channels); > > - cur_height *= depth_to_space_params->block_size; > > - cur_width *= depth_to_space_params->block_size; > > - cur_channels /= depth_to_space_params->block_size * > > depth_to_space_params->block_size; > > - break; > > - case INPUT: > > - return DNN_ERROR; > > - } > > - } > > - > > - // native mode does not support multiple outputs yet > > - if (nb_output > 1) > > - return DNN_ERROR; > > - outputs[0].data = network->layers[network->layers_num - 1].output; > > - outputs[0].height = cur_height; > > - outputs[0].width = cur_width; > > - outputs[0].channels = cur_channels; > > - > > - return DNN_SUCCESS; > > -} > > - > > -void ff_dnn_free_model_native(DNNModel **model) > > -{ > > - ConvolutionalNetwork *network; > > - ConvolutionalParams *conv_params; > > - int32_t layer; > > - > > - if (*model) > > - { > > - network = (ConvolutionalNetwork *)(*model)->model; > > - for (layer = 0; layer < network->layers_num; ++layer){ > > - av_freep(&network->layers[layer].output); > > - if (network->layers[layer].type == CONV){ > > - conv_params = (ConvolutionalParams > > *)network->layers[layer].params; > > - av_freep(&conv_params->kernel); > > - av_freep(&conv_params->biases); > > - } > > - av_freep(&network->layers[layer].params); > > - } > > - av_freep(&network->layers); > > - av_freep(&network); > > - av_freep(model); > > - } > > -} > > diff --git a/libavfilter/dnn_backend_native.h > > b/libavfilter/dnn_backend_native.h > > deleted file mode 100644 > > index 5917955..0000000 > > --- a/libavfilter/dnn_backend_native.h > > +++ /dev/null > > @@ -1,74 +0,0 @@ > > -/* > > - * Copyright (c) 2018 Sergey Lavrushkin > > - * > > - * This file is part of FFmpeg. > > - * > > - * FFmpeg is free software; you can redistribute it and/or > > - * modify it under the terms of the GNU Lesser General Public > > - * License as published by the Free Software Foundation; either > > - * version 2.1 of the License, or (at your option) any later version. > > - * > > - * FFmpeg is distributed in the hope that it will be useful, > > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > > - * Lesser General Public License for more details. > > - * > > - * You should have received a copy of the GNU Lesser General Public > > - * License along with FFmpeg; if not, write to the Free Software > > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA > > 02110-1301 USA > > - */ > > - > > -/** > > - * @file > > - * DNN inference functions interface for native backend. > > - */ > > - > > - > > -#ifndef AVFILTER_DNN_BACKEND_NATIVE_H > > -#define AVFILTER_DNN_BACKEND_NATIVE_H > > - > > -#include "dnn_interface.h" > > -#include "libavformat/avio.h" > > - > > -typedef enum {INPUT, CONV, DEPTH_TO_SPACE} DNNLayerType; > > - > > -typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc; > > - > > -typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNConvPaddingParam; > > - > > -typedef struct Layer{ > > - DNNLayerType type; > > - float *output; > > - void *params; > > -} Layer; > > - > > -typedef struct ConvolutionalParams{ > > - int32_t input_num, output_num, kernel_size; > > - DNNActivationFunc activation; > > - DNNConvPaddingParam padding_method; > > - int32_t dilation; > > - float *kernel; > > - float *biases; > > -} ConvolutionalParams; > > - > > -typedef struct InputParams{ > > - int height, width, channels; > > -} InputParams; > > - > > -typedef struct DepthToSpaceParams{ > > - int block_size; > > -} DepthToSpaceParams; > > - > > -// Represents simple feed-forward convolutional network. > > -typedef struct ConvolutionalNetwork{ > > - Layer *layers; > > - int32_t layers_num; > > -} ConvolutionalNetwork; > > - > > -DNNModel *ff_dnn_load_model_native(const char *model_filename); > > - > > -DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData > > *outputs, uint32_t nb_output); > > - > > -void ff_dnn_free_model_native(DNNModel **model); > > - > > -#endif > > diff --git a/libavfilter/dnn_backend_tf.c b/libavfilter/dnn_backend_tf.c > > deleted file mode 100644 > > index ba959ae..0000000 > > --- a/libavfilter/dnn_backend_tf.c > > +++ /dev/null > > @@ -1,603 +0,0 @@ > > -/* > > - * Copyright (c) 2018 Sergey Lavrushkin > > - * > > - * This file is part of FFmpeg. > > - * > > - * FFmpeg is free software; you can redistribute it and/or > > - * modify it under the terms of the GNU Lesser General Public > > - * License as published by the Free Software Foundation; either > > - * version 2.1 of the License, or (at your option) any later version. > > - * > > - * FFmpeg is distributed in the hope that it will be useful, > > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > > - * Lesser General Public License for more details. > > - * > > - * You should have received a copy of the GNU Lesser General Public > > - * License along with FFmpeg; if not, write to the Free Software > > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA > > 02110-1301 USA > > - */ > > - > > -/** > > - * @file > > - * DNN tensorflow backend implementation. > > - */ > > - > > -#include "dnn_backend_tf.h" > > -#include "dnn_backend_native.h" > > -#include "libavformat/avio.h" > > -#include "libavutil/avassert.h" > > - > > -#include <tensorflow/c/c_api.h> > > - > > -typedef struct TFModel{ > > - TF_Graph *graph; > > - TF_Session *session; > > - TF_Status *status; > > - TF_Output input; > > - TF_Tensor *input_tensor; > > - TF_Output *outputs; > > - TF_Tensor **output_tensors; > > - uint32_t nb_output; > > -} TFModel; > > - > > -static void free_buffer(void *data, size_t length) > > -{ > > - av_freep(&data); > > -} > > - > > -static TF_Buffer *read_graph(const char *model_filename) > > -{ > > - TF_Buffer *graph_buf; > > - unsigned char *graph_data = NULL; > > - AVIOContext *model_file_context; > > - long size, bytes_read; > > - > > - if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < > > 0){ > > - return NULL; > > - } > > - > > - size = avio_size(model_file_context); > > - > > - graph_data = av_malloc(size); > > - if (!graph_data){ > > - avio_closep(&model_file_context); > > - return NULL; > > - } > > - bytes_read = avio_read(model_file_context, graph_data, size); > > - avio_closep(&model_file_context); > > - if (bytes_read != size){ > > - av_freep(&graph_data); > > - return NULL; > > - } > > - > > - graph_buf = TF_NewBuffer(); > > - graph_buf->data = (void *)graph_data; > > - graph_buf->length = size; > > - graph_buf->data_deallocator = free_buffer; > > - > > - return graph_buf; > > -} > > - > > -static TF_Tensor *allocate_input_tensor(const DNNInputData *input) > > -{ > > - TF_DataType dt; > > - size_t size; > > - int64_t input_dims[] = {1, input->height, input->width, > > input->channels}; > > - switch (input->dt) { > > - case DNN_FLOAT: > > - dt = TF_FLOAT; > > - size = sizeof(float); > > - break; > > - case DNN_UINT8: > > - dt = TF_UINT8; > > - size = sizeof(char); > > - break; > > - default: > > - av_assert0(!"should not reach here"); > > - } > > - > > - return TF_AllocateTensor(dt, input_dims, 4, > > - input_dims[1] * input_dims[2] * input_dims[3] > > * size); > > -} > > - > > -static DNNReturnType set_input_output_tf(void *model, DNNInputData *input, > > const char *input_name, const char **output_names, uint32_t nb_output) > > -{ > > - TFModel *tf_model = (TFModel *)model; > > - TF_SessionOptions *sess_opts; > > - const TF_Operation *init_op = TF_GraphOperationByName(tf_model->graph, > > "init"); > > - > > - // Input operation > > - tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, > > input_name); > > - if (!tf_model->input.oper){ > > - return DNN_ERROR; > > - } > > - tf_model->input.index = 0; > > - if (tf_model->input_tensor){ > > - TF_DeleteTensor(tf_model->input_tensor); > > - } > > - tf_model->input_tensor = allocate_input_tensor(input); > > - if (!tf_model->input_tensor){ > > - return DNN_ERROR; > > - } > > - input->data = (float *)TF_TensorData(tf_model->input_tensor); > > - > > - // Output operation > > - if (nb_output == 0) > > - return DNN_ERROR; > > - > > - av_freep(&tf_model->outputs); > > - tf_model->outputs = av_malloc_array(nb_output, > > sizeof(*tf_model->outputs)); > > - if (!tf_model->outputs) > > - return DNN_ERROR; > > - for (int i = 0; i < nb_output; ++i) { > > - tf_model->outputs[i].oper = > > TF_GraphOperationByName(tf_model->graph, output_names[i]); > > - if (!tf_model->outputs[i].oper){ > > - av_freep(&tf_model->outputs); > > - return DNN_ERROR; > > - } > > - tf_model->outputs[i].index = 0; > > - } > > - > > - if (tf_model->output_tensors) { > > - for (uint32_t i = 0; i < tf_model->nb_output; ++i) { > > - if (tf_model->output_tensors[i]) { > > - TF_DeleteTensor(tf_model->output_tensors[i]); > > - tf_model->output_tensors[i] = NULL; > > - } > > - } > > - } > > - av_freep(&tf_model->output_tensors); > > - tf_model->output_tensors = av_mallocz_array(nb_output, > > sizeof(*tf_model->output_tensors)); > > - if (!tf_model->output_tensors) { > > - av_freep(&tf_model->outputs); > > - return DNN_ERROR; > > - } > > - > > - tf_model->nb_output = nb_output; > > - > > - if (tf_model->session){ > > - TF_CloseSession(tf_model->session, tf_model->status); > > - TF_DeleteSession(tf_model->session, tf_model->status); > > - } > > - > > - sess_opts = TF_NewSessionOptions(); > > - tf_model->session = TF_NewSession(tf_model->graph, sess_opts, > > tf_model->status); > > - TF_DeleteSessionOptions(sess_opts); > > - if (TF_GetCode(tf_model->status) != TF_OK) > > - { > > - return DNN_ERROR; > > - } > > - > > - // Run initialization operation with name "init" if it is present in > > graph > > - if (init_op){ > > - TF_SessionRun(tf_model->session, NULL, > > - NULL, NULL, 0, > > - NULL, NULL, 0, > > - &init_op, 1, NULL, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK) > > - { > > - return DNN_ERROR; > > - } > > - } > > - > > - return DNN_SUCCESS; > > -} > > - > > -static DNNReturnType load_tf_model(TFModel *tf_model, const char > > *model_filename) > > -{ > > - TF_Buffer *graph_def; > > - TF_ImportGraphDefOptions *graph_opts; > > - > > - graph_def = read_graph(model_filename); > > - if (!graph_def){ > > - return DNN_ERROR; > > - } > > - tf_model->graph = TF_NewGraph(); > > - tf_model->status = TF_NewStatus(); > > - graph_opts = TF_NewImportGraphDefOptions(); > > - TF_GraphImportGraphDef(tf_model->graph, graph_def, graph_opts, > > tf_model->status); > > - TF_DeleteImportGraphDefOptions(graph_opts); > > - TF_DeleteBuffer(graph_def); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - TF_DeleteGraph(tf_model->graph); > > - TF_DeleteStatus(tf_model->status); > > - return DNN_ERROR; > > - } > > - > > - return DNN_SUCCESS; > > -} > > - > > -#define NAME_BUFFER_SIZE 256 > > - > > -static DNNReturnType add_conv_layer(TFModel *tf_model, TF_Operation > > *transpose_op, TF_Operation **cur_op, > > - ConvolutionalParams* params, const int > > layer) > > -{ > > - TF_Operation *op; > > - TF_OperationDescription *op_desc; > > - TF_Output input; > > - int64_t strides[] = {1, 1, 1, 1}; > > - TF_Tensor *tensor; > > - int64_t dims[4]; > > - int dims_len; > > - char name_buffer[NAME_BUFFER_SIZE]; > > - int32_t size; > > - > > - size = params->input_num * params->output_num * params->kernel_size * > > params->kernel_size; > > - input.index = 0; > > - > > - snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_kernel%d", layer); > > - op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); > > - TF_SetAttrType(op_desc, "dtype", TF_FLOAT); > > - dims[0] = params->output_num; > > - dims[1] = params->kernel_size; > > - dims[2] = params->kernel_size; > > - dims[3] = params->input_num; > > - dims_len = 4; > > - tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, size * > > sizeof(float)); > > - memcpy(TF_TensorData(tensor), params->kernel, size * sizeof(float)); > > - TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - return DNN_ERROR; > > - } > > - op = TF_FinishOperation(op_desc, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - return DNN_ERROR; > > - } > > - > > - snprintf(name_buffer, NAME_BUFFER_SIZE, "transpose%d", layer); > > - op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer); > > - input.oper = op; > > - TF_AddInput(op_desc, input); > > - input.oper = transpose_op; > > - TF_AddInput(op_desc, input); > > - TF_SetAttrType(op_desc, "T", TF_FLOAT); > > - TF_SetAttrType(op_desc, "Tperm", TF_INT32); > > - op = TF_FinishOperation(op_desc, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - return DNN_ERROR; > > - } > > - > > - snprintf(name_buffer, NAME_BUFFER_SIZE, "conv2d%d", layer); > > - op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer); > > - input.oper = *cur_op; > > - TF_AddInput(op_desc, input); > > - input.oper = op; > > - TF_AddInput(op_desc, input); > > - TF_SetAttrType(op_desc, "T", TF_FLOAT); > > - TF_SetAttrIntList(op_desc, "strides", strides, 4); > > - TF_SetAttrString(op_desc, "padding", "VALID", 5); > > - *cur_op = TF_FinishOperation(op_desc, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - return DNN_ERROR; > > - } > > - > > - snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_biases%d", layer); > > - op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); > > - TF_SetAttrType(op_desc, "dtype", TF_FLOAT); > > - dims[0] = params->output_num; > > - dims_len = 1; > > - tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, > > params->output_num * sizeof(float)); > > - memcpy(TF_TensorData(tensor), params->biases, params->output_num * > > sizeof(float)); > > - TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - return DNN_ERROR; > > - } > > - op = TF_FinishOperation(op_desc, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - return DNN_ERROR; > > - } > > - > > - snprintf(name_buffer, NAME_BUFFER_SIZE, "bias_add%d", layer); > > - op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer); > > - input.oper = *cur_op; > > - TF_AddInput(op_desc, input); > > - input.oper = op; > > - TF_AddInput(op_desc, input); > > - TF_SetAttrType(op_desc, "T", TF_FLOAT); > > - *cur_op = TF_FinishOperation(op_desc, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - return DNN_ERROR; > > - } > > - > > - snprintf(name_buffer, NAME_BUFFER_SIZE, "activation%d", layer); > > - switch (params->activation){ > > - case RELU: > > - op_desc = TF_NewOperation(tf_model->graph, "Relu", name_buffer); > > - break; > > - case TANH: > > - op_desc = TF_NewOperation(tf_model->graph, "Tanh", name_buffer); > > - break; > > - case SIGMOID: > > - op_desc = TF_NewOperation(tf_model->graph, "Sigmoid", name_buffer); > > - break; > > - default: > > - return DNN_ERROR; > > - } > > - input.oper = *cur_op; > > - TF_AddInput(op_desc, input); > > - TF_SetAttrType(op_desc, "T", TF_FLOAT); > > - *cur_op = TF_FinishOperation(op_desc, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - return DNN_ERROR; > > - } > > - > > - return DNN_SUCCESS; > > -} > > - > > -static DNNReturnType add_depth_to_space_layer(TFModel *tf_model, > > TF_Operation **cur_op, > > - DepthToSpaceParams *params, > > const int layer) > > -{ > > - TF_OperationDescription *op_desc; > > - TF_Output input; > > - char name_buffer[NAME_BUFFER_SIZE]; > > - > > - snprintf(name_buffer, NAME_BUFFER_SIZE, "depth_to_space%d", layer); > > - op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", > > name_buffer); > > - input.oper = *cur_op; > > - input.index = 0; > > - TF_AddInput(op_desc, input); > > - TF_SetAttrType(op_desc, "T", TF_FLOAT); > > - TF_SetAttrInt(op_desc, "block_size", params->block_size); > > - *cur_op = TF_FinishOperation(op_desc, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - return DNN_ERROR; > > - } > > - > > - return DNN_SUCCESS; > > -} > > - > > -static int calculate_pad(const ConvolutionalNetwork *conv_network) > > -{ > > - ConvolutionalParams *params; > > - int32_t layer; > > - int pad = 0; > > - > > - for (layer = 0; layer < conv_network->layers_num; ++layer){ > > - if (conv_network->layers[layer].type == CONV){ > > - params = (ConvolutionalParams > > *)conv_network->layers[layer].params; > > - pad += params->kernel_size >> 1; > > - } > > - } > > - > > - return pad; > > -} > > - > > -static DNNReturnType add_pad_op(TFModel *tf_model, TF_Operation **cur_op, > > const int32_t pad) > > -{ > > - TF_Operation *op; > > - TF_Tensor *tensor; > > - TF_OperationDescription *op_desc; > > - TF_Output input; > > - int32_t *pads; > > - int64_t pads_shape[] = {4, 2}; > > - > > - input.index = 0; > > - > > - op_desc = TF_NewOperation(tf_model->graph, "Const", "pads"); > > - TF_SetAttrType(op_desc, "dtype", TF_INT32); > > - tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * > > sizeof(int32_t)); > > - pads = (int32_t *)TF_TensorData(tensor); > > - pads[0] = 0; pads[1] = 0; > > - pads[2] = pad; pads[3] = pad; > > - pads[4] = pad; pads[5] = pad; > > - pads[6] = 0; pads[7] = 0; > > - TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - return DNN_ERROR; > > - } > > - op = TF_FinishOperation(op_desc, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - return DNN_ERROR; > > - } > > - > > - op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad"); > > - input.oper = *cur_op; > > - TF_AddInput(op_desc, input); > > - input.oper = op; > > - TF_AddInput(op_desc, input); > > - TF_SetAttrType(op_desc, "T", TF_FLOAT); > > - TF_SetAttrType(op_desc, "Tpaddings", TF_INT32); > > - TF_SetAttrString(op_desc, "mode", "SYMMETRIC", 9); > > - *cur_op = TF_FinishOperation(op_desc, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - return DNN_ERROR; > > - } > > - > > - return DNN_SUCCESS; > > -} > > - > > -static DNNReturnType load_native_model(TFModel *tf_model, const char > > *model_filename) > > -{ > > - int32_t layer; > > - TF_OperationDescription *op_desc; > > - TF_Operation *op; > > - TF_Operation *transpose_op; > > - TF_Tensor *tensor; > > - TF_Output input; > > - int32_t *transpose_perm; > > - int64_t transpose_perm_shape[] = {4}; > > - int64_t input_shape[] = {1, -1, -1, -1}; > > - int32_t pad; > > - DNNReturnType layer_add_res; > > - DNNModel *native_model = NULL; > > - ConvolutionalNetwork *conv_network; > > - > > - native_model = ff_dnn_load_model_native(model_filename); > > - if (!native_model){ > > - return DNN_ERROR; > > - } > > - > > - conv_network = (ConvolutionalNetwork *)native_model->model; > > - pad = calculate_pad(conv_network); > > - tf_model->graph = TF_NewGraph(); > > - tf_model->status = TF_NewStatus(); > > - > > -#define CLEANUP_ON_ERROR(tf_model) \ > > - { \ > > - TF_DeleteGraph(tf_model->graph); \ > > - TF_DeleteStatus(tf_model->status); \ > > - return DNN_ERROR; \ > > - } > > - > > - op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x"); > > - TF_SetAttrType(op_desc, "dtype", TF_FLOAT); > > - TF_SetAttrShape(op_desc, "shape", input_shape, 4); > > - op = TF_FinishOperation(op_desc, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - CLEANUP_ON_ERROR(tf_model); > > - } > > - > > - if (add_pad_op(tf_model, &op, pad) != DNN_SUCCESS){ > > - CLEANUP_ON_ERROR(tf_model); > > - } > > - > > - op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm"); > > - TF_SetAttrType(op_desc, "dtype", TF_INT32); > > - tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * > > sizeof(int32_t)); > > - transpose_perm = (int32_t *)TF_TensorData(tensor); > > - transpose_perm[0] = 1; > > - transpose_perm[1] = 2; > > - transpose_perm[2] = 3; > > - transpose_perm[3] = 0; > > - TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - CLEANUP_ON_ERROR(tf_model); > > - } > > - transpose_op = TF_FinishOperation(op_desc, tf_model->status); > > - > > - for (layer = 0; layer < conv_network->layers_num; ++layer){ > > - switch (conv_network->layers[layer].type){ > > - case INPUT: > > - layer_add_res = DNN_SUCCESS; > > - break; > > - case CONV: > > - layer_add_res = add_conv_layer(tf_model, transpose_op, &op, > > - (ConvolutionalParams > > *)conv_network->layers[layer].params, layer); > > - break; > > - case DEPTH_TO_SPACE: > > - layer_add_res = add_depth_to_space_layer(tf_model, &op, > > - (DepthToSpaceParams > > *)conv_network->layers[layer].params, layer); > > - break; > > - default: > > - CLEANUP_ON_ERROR(tf_model); > > - } > > - > > - if (layer_add_res != DNN_SUCCESS){ > > - CLEANUP_ON_ERROR(tf_model); > > - } > > - } > > - > > - op_desc = TF_NewOperation(tf_model->graph, "Identity", "y"); > > - input.oper = op; > > - TF_AddInput(op_desc, input); > > - TF_FinishOperation(op_desc, tf_model->status); > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - CLEANUP_ON_ERROR(tf_model); > > - } > > - > > - ff_dnn_free_model_native(&native_model); > > - > > - return DNN_SUCCESS; > > -} > > - > > -DNNModel *ff_dnn_load_model_tf(const char *model_filename) > > -{ > > - DNNModel *model = NULL; > > - TFModel *tf_model = NULL; > > - > > - model = av_malloc(sizeof(DNNModel)); > > - if (!model){ > > - return NULL; > > - } > > - > > - tf_model = av_mallocz(sizeof(TFModel)); > > - if (!tf_model){ > > - av_freep(&model); > > - return NULL; > > - } > > - > > - if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){ > > - if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){ > > - av_freep(&tf_model); > > - av_freep(&model); > > - > > - return NULL; > > - } > > - } > > - > > - model->model = (void *)tf_model; > > - model->set_input_output = &set_input_output_tf; > > - > > - return model; > > -} > > - > > - > > - > > -DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData > > *outputs, uint32_t nb_output) > > -{ > > - TFModel *tf_model = (TFModel *)model->model; > > - uint32_t nb = FFMIN(nb_output, tf_model->nb_output); > > - if (nb == 0) > > - return DNN_ERROR; > > - > > - av_assert0(tf_model->output_tensors); > > - for (uint32_t i = 0; i < tf_model->nb_output; ++i) { > > - if (tf_model->output_tensors[i]) { > > - TF_DeleteTensor(tf_model->output_tensors[i]); > > - tf_model->output_tensors[i] = NULL; > > - } > > - } > > - > > - TF_SessionRun(tf_model->session, NULL, > > - &tf_model->input, &tf_model->input_tensor, 1, > > - tf_model->outputs, tf_model->output_tensors, nb, > > - NULL, 0, NULL, tf_model->status); > > - > > - if (TF_GetCode(tf_model->status) != TF_OK){ > > - return DNN_ERROR; > > - } > > - > > - for (uint32_t i = 0; i < nb; ++i) { > > - outputs[i].height = TF_Dim(tf_model->output_tensors[i], 1); > > - outputs[i].width = TF_Dim(tf_model->output_tensors[i], 2); > > - outputs[i].channels = TF_Dim(tf_model->output_tensors[i], 3); > > - outputs[i].data = TF_TensorData(tf_model->output_tensors[i]); > > - } > > - > > - return DNN_SUCCESS; > > -} > > - > > -void ff_dnn_free_model_tf(DNNModel **model) > > -{ > > - TFModel *tf_model; > > - > > - if (*model){ > > - tf_model = (TFModel *)(*model)->model; > > - if (tf_model->graph){ > > - TF_DeleteGraph(tf_model->graph); > > - } > > - if (tf_model->session){ > > - TF_CloseSession(tf_model->session, tf_model->status); > > - TF_DeleteSession(tf_model->session, tf_model->status); > > - } > > - if (tf_model->status){ > > - TF_DeleteStatus(tf_model->status); > > - } > > - if (tf_model->input_tensor){ > > - TF_DeleteTensor(tf_model->input_tensor); > > - } > > - if (tf_model->output_tensors) { > > - for (uint32_t i = 0; i < tf_model->nb_output; ++i) { > > - if (tf_model->output_tensors[i]) { > > - TF_DeleteTensor(tf_model->output_tensors[i]); > > - tf_model->output_tensors[i] = NULL; > > - } > > - } > > - } > > - av_freep(&tf_model->outputs); > > - av_freep(&tf_model->output_tensors); > > - av_freep(&tf_model); > > - av_freep(model); > > - } > > -} > > diff --git a/libavfilter/dnn_backend_tf.h b/libavfilter/dnn_backend_tf.h > > deleted file mode 100644 > > index 07877b1..0000000 > > --- a/libavfilter/dnn_backend_tf.h > > +++ /dev/null > > @@ -1,38 +0,0 @@ > > -/* > > - * Copyright (c) 2018 Sergey Lavrushkin > > - * > > - * This file is part of FFmpeg. > > - * > > - * FFmpeg is free software; you can redistribute it and/or > > - * modify it under the terms of the GNU Lesser General Public > > - * License as published by the Free Software Foundation; either > > - * version 2.1 of the License, or (at your option) any later version. > > - * > > - * FFmpeg is distributed in the hope that it will be useful, > > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > > - * Lesser General Public License for more details. > > - * > > - * You should have received a copy of the GNU Lesser General Public > > - * License along with FFmpeg; if not, write to the Free Software > > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA > > 02110-1301 USA > > - */ > > - > > -/** > > - * @file > > - * DNN inference functions interface for TensorFlow backend. > > - */ > > - > > - > > -#ifndef AVFILTER_DNN_BACKEND_TF_H > > -#define AVFILTER_DNN_BACKEND_TF_H > > - > > -#include "dnn_interface.h" > > - > > -DNNModel *ff_dnn_load_model_tf(const char *model_filename); > > - > > -DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData > > *outputs, uint32_t nb_output); > > - > > -void ff_dnn_free_model_tf(DNNModel **model); > > - > > -#endif > > diff --git a/libavfilter/dnn_interface.c b/libavfilter/dnn_interface.c > > deleted file mode 100644 > > index 86fc283..0000000 > > --- a/libavfilter/dnn_interface.c > > +++ /dev/null > > @@ -1,63 +0,0 @@ > > -/* > > - * Copyright (c) 2018 Sergey Lavrushkin > > - * > > - * This file is part of FFmpeg. > > - * > > - * FFmpeg is free software; you can redistribute it and/or > > - * modify it under the terms of the GNU Lesser General Public > > - * License as published by the Free Software Foundation; either > > - * version 2.1 of the License, or (at your option) any later version. > > - * > > - * FFmpeg is distributed in the hope that it will be useful, > > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > > - * Lesser General Public License for more details. > > - * > > - * You should have received a copy of the GNU Lesser General Public > > - * License along with FFmpeg; if not, write to the Free Software > > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA > > 02110-1301 USA > > - */ > > - > > -/** > > - * @file > > - * Implements DNN module initialization with specified backend. > > - */ > > - > > -#include "dnn_interface.h" > > -#include "dnn_backend_native.h" > > -#include "dnn_backend_tf.h" > > -#include "libavutil/mem.h" > > - > > -DNNModule *ff_get_dnn_module(DNNBackendType backend_type) > > -{ > > - DNNModule *dnn_module; > > - > > - dnn_module = av_malloc(sizeof(DNNModule)); > > - if(!dnn_module){ > > - return NULL; > > - } > > - > > - switch(backend_type){ > > - case DNN_NATIVE: > > - dnn_module->load_model = &ff_dnn_load_model_native; > > - dnn_module->execute_model = &ff_dnn_execute_model_native; > > - dnn_module->free_model = &ff_dnn_free_model_native; > > - break; > > - case DNN_TF: > > - #if (CONFIG_LIBTENSORFLOW == 1) > > - dnn_module->load_model = &ff_dnn_load_model_tf; > > - dnn_module->execute_model = &ff_dnn_execute_model_tf; > > - dnn_module->free_model = &ff_dnn_free_model_tf; > > - #else > > - av_freep(&dnn_module); > > - return NULL; > > - #endif > > - break; > > - default: > > - av_log(NULL, AV_LOG_ERROR, "Module backend_type is not native or > > tensorflow\n"); > > - av_freep(&dnn_module); > > - return NULL; > > - } > > - > > - return dnn_module; > > -} > > -- > > 2.7.4 > > > > _______________________________________________ > > ffmpeg-devel mailing list > > ffmpeg-devel@ffmpeg.org > > https://ffmpeg.org/mailman/listinfo/ffmpeg-devel > > > > To unsubscribe, visit link above, or email > > ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe". _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel To unsubscribe, visit link above, or email ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".