> -----Original Message----- > From: ffmpeg-devel [mailto:ffmpeg-devel-boun...@ffmpeg.org] On Behalf Of > Liu Steven > Sent: Tuesday, May 28, 2019 6:00 PM > To: FFmpeg development discussions and patches <ffmpeg-devel@ffmpeg.org> > Cc: Liu Steven <l...@chinaffmpeg.org>; Guo, Yejun <yejun....@intel.com> > Subject: Re: [FFmpeg-devel] [PATCH 1/2] libavfilter/dnn: add script to convert > TensorFlow model (.pb) to native model (.model) > > > > > 在 2019年5月28日,下午4:01,Guo, Yejun <yejun....@intel.com> 写 > 道: > > > > For example, given TensorFlow model file espcn.pb, > > to generate native model file espcn.model, just run: > > python convert.py espcn.pb > > > > In current implementation, the native model file is generated for > > specific dnn network with hard-code python scripts maintained out of ffmpeg. > > For example, srcnn network used by vf_sr is generated with > > > https://github.com/HighVoltageRocknRoll/sr/blob/master/generate_header_a > nd_model.py#L85 > > > > In this patch, the script is designed as a general solution which > > converts general TensorFlow model .pb file into .model file. The script > > now has some tricky to be compatible with current implemention, will > > be refined step by step. > > > > The script is also added into ffmpeg source tree. It is expected there > > will be many more patches and community needs the ownership of it. > > > > Another technical direction is to do the conversion in c/c++ code within > > ffmpeg source tree. While .pb file is organized with protocol buffers, > > it is not easy to do such work with tiny c/c++ code, see more discussion > > at http://ffmpeg.org/pipermail/ffmpeg-devel/2019-May/244496.html. So, > > choose the python script. > > > > Signed-off-by: Guo, Yejun <yejun....@intel.com> > > --- > > libavfilter/dnn/python/convert.py | 52 ++++++ > > libavfilter/dnn/python/convert_from_tensorflow.py | 200 > ++++++++++++++++++++++ > What about move them into ./tools/ ?
yes, this is another feasible option. My idea is to put all the dnn stuffs together, other dnn .h/.c files will be at libavfilter/dnn/ > > > 2 files changed, 252 insertions(+) > > create mode 100644 libavfilter/dnn/python/convert.py > > create mode 100644 libavfilter/dnn/python/convert_from_tensorflow.py > > > > diff --git a/libavfilter/dnn/python/convert.py > b/libavfilter/dnn/python/convert.py > > new file mode 100644 > > index 0000000..662b429 > > --- /dev/null > > +++ b/libavfilter/dnn/python/convert.py > > @@ -0,0 +1,52 @@ > > +# Copyright (c) 2019 Guo Yejun > > +# > > +# This file is part of FFmpeg. > > +# > > +# FFmpeg is free software; you can redistribute it and/or > > +# modify it under the terms of the GNU Lesser General Public > > +# License as published by the Free Software Foundation; either > > +# version 2.1 of the License, or (at your option) any later version. > > +# > > +# FFmpeg is distributed in the hope that it will be useful, > > +# but WITHOUT ANY WARRANTY; without even the implied warranty of > > +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > GNU > > +# Lesser General Public License for more details. > > +# > > +# You should have received a copy of the GNU Lesser General Public > > +# License along with FFmpeg; if not, write to the Free Software > > +# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 > USA > > +# > ================================================================ > ============== > > + > > +# verified with Python 3.5.2 on Ubuntu 16.04 > > +import argparse > > +import os > > +from convert_from_tensorflow import * > > + > > +def get_arguments(): > > + parser = argparse.ArgumentParser(description='generate native mode > model with weights from deep learning model') > > + parser.add_argument('--outdir', type=str, default='./', help='where to > put generated files') > > + parser.add_argument('--infmt', type=str, default='tensorflow', > help='format of the deep learning model') > > + parser.add_argument('infile', help='path to the deep learning model > with weights') > > + > > + return parser.parse_args() > > + > > +def main(): > > + args = get_arguments() > > + > > + if not os.path.isfile(args.infile): > > + print('the specified input file %s does not exist' % args.infile) > > + exit(1) > > + > > + if not os.path.exists(args.outdir): > > + print('create output directory %s' % args.outdir) > > + os.mkdir(args.outdir) > > + > > + basefile = os.path.split(args.infile)[1] > > + basefile = os.path.splitext(basefile)[0] > > + outfile = os.path.join(args.outdir, basefile) + '.model' > > + > > + if args.infmt == 'tensorflow': > > + convert_from_tensorflow(args.infile, outfile) > > + > > +if __name__ == '__main__': > > + main() > > diff --git a/libavfilter/dnn/python/convert_from_tensorflow.py > b/libavfilter/dnn/python/convert_from_tensorflow.py > > new file mode 100644 > > index 0000000..436ec0e > > --- /dev/null > > +++ b/libavfilter/dnn/python/convert_from_tensorflow.py > > @@ -0,0 +1,200 @@ > > +# Copyright (c) 2019 Guo Yejun > > +# > > +# This file is part of FFmpeg. > > +# > > +# FFmpeg is free software; you can redistribute it and/or > > +# modify it under the terms of the GNU Lesser General Public > > +# License as published by the Free Software Foundation; either > > +# version 2.1 of the License, or (at your option) any later version. > > +# > > +# FFmpeg is distributed in the hope that it will be useful, > > +# but WITHOUT ANY WARRANTY; without even the implied warranty of > > +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > GNU > > +# Lesser General Public License for more details. > > +# > > +# You should have received a copy of the GNU Lesser General Public > > +# License along with FFmpeg; if not, write to the Free Software > > +# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 > USA > > +# > ================================================================ > ============== > > + > > +import tensorflow as tf > > +import numpy as np > > +import sys, struct > > + > > +__all__ = ['convert_from_tensorflow'] > > + > > +# as the first step to be compatible with vf_sr, it is not general. > > +# it will be refined step by step. > > + > > +class TFConverter: > > + def __init__(self, graph_def, nodes, outfile): > > + self.graph_def = graph_def > > + self.nodes = nodes > > + self.outfile = outfile > > + self.layer_number = 0 > > + self.output_names = [] > > + self.name_node_dict = {} > > + self.edges = {} > > + self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, > 'LeakyRelu':4} > > + self.conv_paddings = {'VALID':2, 'SAME':1} > > + self.converted_nodes = set() > > + > > + > > + def dump_for_tensorboard(self): > > + graph = tf.get_default_graph() > > + tf.import_graph_def(self.graph_def, name="") > > + # tensorboard --logdir=/tmp/graph > > + tf.summary.FileWriter('/tmp/graph', graph) > > + > > + > > + def get_conv2d_params(self, node): > > + knode = self.name_node_dict[node.input[1]] > > + bnode = None > > + activation = 'None' > > + next = self.edges[node.name][0] > > + if next.op == 'BiasAdd': > > + self.converted_nodes.add(next.name) > > + bnode = self.name_node_dict[next.input[1]] > > + next = self.edges[next.name][0] > > + if next.op in self.conv_activations: > > + self.converted_nodes.add(next.name) > > + activation = next.op > > + return knode, bnode, activation > > + > > + > > + def dump_conv2d_to_file(self, node, f): > > + assert(node.op == 'Conv2D') > > + self.layer_number = self.layer_number + 1 > > + self.converted_nodes.add(node.name) > > + knode, bnode, activation = self.get_conv2d_params(node) > > + > > + dilation = node.attr['dilations'].list.i[0] > > + padding = node.attr['padding'].s > > + padding = self.conv_paddings[padding.decode("utf-8")] > > + > > + ktensor = knode.attr['value'].tensor > > + filter_height = ktensor.tensor_shape.dim[0].size > > + filter_width = ktensor.tensor_shape.dim[1].size > > + in_channels = ktensor.tensor_shape.dim[2].size > > + out_channels = ktensor.tensor_shape.dim[3].size > > + kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32) > > + kernel = kernel.reshape(filter_height, filter_width, in_channels, > out_channels) > > + kernel = np.transpose(kernel, [3, 0, 1, 2]) > > + > > + np.array([1, dilation, padding, self.conv_activations[activation], > in_channels, out_channels, filter_height], dtype=np.uint32).tofile(f) > > + kernel.tofile(f) > > + > > + btensor = bnode.attr['value'].tensor > > + if btensor.tensor_shape.dim[0].size == 1: > > + bias = struct.pack("f", btensor.float_val[0]) > > + else: > > + bias = btensor.tensor_content > > + f.write(bias) > > + > > + > > + def dump_depth2space_to_file(self, node, f): > > + assert(node.op == 'DepthToSpace') > > + self.layer_number = self.layer_number + 1 > > + block_size = node.attr['block_size'].i > > + np.array([2, block_size], dtype=np.uint32).tofile(f) > > + self.converted_nodes.add(node.name) > > + > > + > > + def generate_layer_number(self): > > + # in current hard code implementation, the layer number is the > first data written to the native model file > > + # it is not easy to know it at the beginning time in the general > converter, so first do a dry run for compatibility > > + # will be refined later. > > + with open('/tmp/tmp.model', 'wb') as f: > > + self.dump_layers_to_file(f) > > + self.converted_nodes.clear() > > + > > + > > + def dump_layers_to_file(self, f): > > + for node in self.nodes: > > + if node.name in self.converted_nodes: > > + continue > > + if node.op == 'Conv2D': > > + self.dump_conv2d_to_file(node, f) > > + elif node.op == 'DepthToSpace': > > + self.dump_depth2space_to_file(node, f) > > + > > + > > + def dump_to_file(self): > > + self.generate_layer_number() > > + with open(self.outfile, 'wb') as f: > > + np.array([self.layer_number], dtype=np.uint32).tofile(f) > > + self.dump_layers_to_file(f) > > + > > + > > + def generate_name_node_dict(self): > > + for node in self.nodes: > > + self.name_node_dict[node.name] = node > > + > > + > > + def generate_output_names(self): > > + used_names = [] > > + for node in self.nodes: > > + for input in node.input: > > + used_names.append(input) > > + > > + for node in self.nodes: > > + if node.name not in used_names: > > + self.output_names.append(node.name) > > + > > + > > + def remove_identity(self): > > + id_nodes = [] > > + id_dict = {} > > + for node in self.nodes: > > + if node.op == 'Identity': > > + name = node.name > > + input = node.input[0] > > + id_nodes.append(node) > > + # do not change the output name > > + if name in self.output_names: > > + self.name_node_dict[input].name = name > > + self.name_node_dict[name] = > self.name_node_dict[input] > > + del self.name_node_dict[input] > > + else: > > + id_dict[name] = input > > + > > + for idnode in id_nodes: > > + self.nodes.remove(idnode) > > + > > + for node in self.nodes: > > + for i in range(len(node.input)): > > + input = node.input[i] > > + if input in id_dict: > > + node.input[i] = id_dict[input] > > + > > + > > + def generate_edges(self): > > + for node in self.nodes: > > + for input in node.input: > > + if input in self.edges: > > + self.edges[input].append(node) > > + else: > > + self.edges[input] = [node] > > + > > + > > + def run(self): > > + self.generate_name_node_dict() > > + self.generate_output_names() > > + self.remove_identity() > > + self.generate_edges() > > + > > + #check the graph with tensorboard with human eyes > > + #self.dump_for_tensorboard() > > + > > + self.dump_to_file() > > + > > + > > +def convert_from_tensorflow(infile, outfile): > > + with open(infile, 'rb') as f: > > + # read the file in .proto format > > + graph_def = tf.GraphDef() > > + graph_def.ParseFromString(f.read()) > > + nodes = graph_def.node > > + > > + converter = TFConverter(graph_def, nodes, outfile) > > + converter.run() > > -- > > 2.7.4 > > > > _______________________________________________ > > ffmpeg-devel mailing list > > ffmpeg-devel@ffmpeg.org > > https://ffmpeg.org/mailman/listinfo/ffmpeg-devel > > > > To unsubscribe, visit link above, or email > > ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe". > > > > _______________________________________________ > ffmpeg-devel mailing list > ffmpeg-devel@ffmpeg.org > https://ffmpeg.org/mailman/listinfo/ffmpeg-devel > > To unsubscribe, visit link above, or email > ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe". _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel To unsubscribe, visit link above, or email ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".