Em qua, 24 de abr de 2019 às 23:14, Guo, Yejun <yejun....@intel.com> escreveu: > > some models such as ssd, yolo have more than one output. > > the clean up code in this patch is a little complex, it is because > that set_input_output_tf could be called for many times together > with ff_dnn_execute_model_tf, we have to clean resources for the > case that the two interfaces are called interleaved. > > Signed-off-by: Guo, Yejun <yejun....@intel.com> > --- > libavfilter/dnn_backend_native.c | 15 +++++--- > libavfilter/dnn_backend_native.h | 2 +- > libavfilter/dnn_backend_tf.c | 80 > ++++++++++++++++++++++++++++++++-------- > libavfilter/dnn_backend_tf.h | 2 +- > libavfilter/dnn_interface.h | 6 ++- > libavfilter/vf_sr.c | 11 +++--- > 6 files changed, 85 insertions(+), 31 deletions(-) > > diff --git a/libavfilter/dnn_backend_native.c > b/libavfilter/dnn_backend_native.c > index 18735c0..8a83c63 100644 > --- a/libavfilter/dnn_backend_native.c > +++ b/libavfilter/dnn_backend_native.c > @@ -25,7 +25,7 @@ > > #include "dnn_backend_native.h" > > -static DNNReturnType set_input_output_native(void *model, DNNData *input, > const char *input_name, const char *output_name) > +static DNNReturnType set_input_output_native(void *model, DNNData *input, > const char *input_name, const char **output_names, uint32_t nb_output) > { > ConvolutionalNetwork *network = (ConvolutionalNetwork *)model; > InputParams *input_params; > @@ -275,7 +275,7 @@ static void depth_to_space(const float *input, float > *output, int block_size, in > } > } > > -DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData > *output) > +DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData > *outputs, uint32_t nb_output) > { > ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model; > int cur_width, cur_height, cur_channels; > @@ -317,10 +317,13 @@ DNNReturnType ff_dnn_execute_model_native(const > DNNModel *model, DNNData *output > } > } > > - output->data = network->layers[network->layers_num - 1].output; > - output->height = cur_height; > - output->width = cur_width; > - output->channels = cur_channels; > + // native mode does not support multiple outputs yet > + if (nb_output > 1) > + return DNN_ERROR; > + outputs[0].data = network->layers[network->layers_num - 1].output; > + outputs[0].height = cur_height; > + outputs[0].width = cur_width; > + outputs[0].channels = cur_channels; > > return DNN_SUCCESS; > } > diff --git a/libavfilter/dnn_backend_native.h > b/libavfilter/dnn_backend_native.h > index adaf4a7..e13a68a 100644 > --- a/libavfilter/dnn_backend_native.h > +++ b/libavfilter/dnn_backend_native.h > @@ -63,7 +63,7 @@ typedef struct ConvolutionalNetwork{ > > DNNModel *ff_dnn_load_model_native(const char *model_filename); > > -DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData > *output); > +DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData > *outputs, uint32_t nb_output); > > void ff_dnn_free_model_native(DNNModel **model); > > diff --git a/libavfilter/dnn_backend_tf.c b/libavfilter/dnn_backend_tf.c > index be8401e..ca6472d 100644 > --- a/libavfilter/dnn_backend_tf.c > +++ b/libavfilter/dnn_backend_tf.c > @@ -26,6 +26,7 @@ > #include "dnn_backend_tf.h" > #include "dnn_backend_native.h" > #include "libavformat/avio.h" > +#include "libavutil/avassert.h" > > #include <tensorflow/c/c_api.h> > > @@ -33,9 +34,11 @@ typedef struct TFModel{ > TF_Graph *graph; > TF_Session *session; > TF_Status *status; > - TF_Output input, output; > + TF_Output input; > TF_Tensor *input_tensor; > - TF_Tensor *output_tensor; > + TF_Output *outputs; > + TF_Tensor **output_tensors; > + uint32_t nb_output; > } TFModel; > > static void free_buffer(void *data, size_t length) > @@ -76,7 +79,7 @@ static TF_Buffer *read_graph(const char *model_filename) > return graph_buf; > } > > -static DNNReturnType set_input_output_tf(void *model, DNNData *input, const > char *input_name, const char *output_name) > +static DNNReturnType set_input_output_tf(void *model, DNNData *input, const > char *input_name, const char **output_names, uint32_t nb_output) > { > TFModel *tf_model = (TFModel *)model; > int64_t input_dims[] = {1, input->height, input->width, input->channels}; > @@ -100,11 +103,38 @@ static DNNReturnType set_input_output_tf(void *model, > DNNData *input, const char > input->data = (float *)TF_TensorData(tf_model->input_tensor); > > // Output operation > - tf_model->output.oper = TF_GraphOperationByName(tf_model->graph, > output_name); > - if (!tf_model->output.oper){ > + if (nb_output == 0) > + return DNN_ERROR; > + > + av_freep(&tf_model->outputs); > + tf_model->outputs = av_malloc_array(nb_output, > sizeof(*tf_model->outputs)); > + if (!tf_model->outputs) > + return DNN_ERROR; > + for (int i = 0; i < nb_output; ++i) { > + tf_model->outputs[i].oper = TF_GraphOperationByName(tf_model->graph, > output_names[i]); > + if (!tf_model->outputs[i].oper){ > + av_freep(&tf_model->outputs); > + return DNN_ERROR; > + } > + tf_model->outputs[i].index = 0; > + } > + > + if (tf_model->output_tensors) { > + for (uint32_t i = 0; i < tf_model->nb_output; ++i) { > + if (tf_model->output_tensors[i]) { > + TF_DeleteTensor(tf_model->output_tensors[i]); > + tf_model->output_tensors[i] = NULL; > + } > + } > + } > + av_freep(&tf_model->output_tensors); > + tf_model->output_tensors = av_mallocz_array(nb_output, > sizeof(*tf_model->output_tensors)); > + if (!tf_model->output_tensors) { > + av_freep(&tf_model->outputs); > return DNN_ERROR; > } > - tf_model->output.index = 0; > + > + tf_model->nb_output = nb_output; > > if (tf_model->session){ > TF_CloseSession(tf_model->session, tf_model->status); > @@ -484,25 +514,36 @@ DNNModel *ff_dnn_load_model_tf(const char > *model_filename) > > > > -DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *output) > +DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData > *outputs, uint32_t nb_output) > { > TFModel *tf_model = (TFModel *)model->model; > - if (tf_model->output_tensor) > - TF_DeleteTensor(tf_model->output_tensor); > + uint32_t nb = FFMIN(nb_output, tf_model->nb_output); > + if (nb == 0) > + return DNN_ERROR; > + > + av_assert0(tf_model->output_tensors); > + for (uint32_t i = 0; i < tf_model->nb_output; ++i) { > + if (tf_model->output_tensors[i]) { > + TF_DeleteTensor(tf_model->output_tensors[i]); > + tf_model->output_tensors[i] = NULL; > + } > + } > > TF_SessionRun(tf_model->session, NULL, > &tf_model->input, &tf_model->input_tensor, 1, > - &tf_model->output, &tf_model->output_tensor, 1, > + tf_model->outputs, tf_model->output_tensors, nb, > NULL, 0, NULL, tf_model->status); > > if (TF_GetCode(tf_model->status) != TF_OK){ > return DNN_ERROR; > } > > - output->height = TF_Dim(tf_model->output_tensor, 1); > - output->width = TF_Dim(tf_model->output_tensor, 2); > - output->channels = TF_Dim(tf_model->output_tensor, 3); > - output->data = TF_TensorData(tf_model->output_tensor); > + for (uint32_t i = 0; i < nb; ++i) { > + outputs[i].height = TF_Dim(tf_model->output_tensors[i], 1); > + outputs[i].width = TF_Dim(tf_model->output_tensors[i], 2); > + outputs[i].channels = TF_Dim(tf_model->output_tensors[i], 3); > + outputs[i].data = TF_TensorData(tf_model->output_tensors[i]); > + } > > return DNN_SUCCESS; > } > @@ -526,9 +567,16 @@ void ff_dnn_free_model_tf(DNNModel **model) > if (tf_model->input_tensor){ > TF_DeleteTensor(tf_model->input_tensor); > } > - if (tf_model->output_tensor){ > - TF_DeleteTensor(tf_model->output_tensor); > + if (tf_model->output_tensors) { > + for (uint32_t i = 0; i < tf_model->nb_output; ++i) { > + if (tf_model->output_tensors[i]) { > + TF_DeleteTensor(tf_model->output_tensors[i]); > + tf_model->output_tensors[i] = NULL; > + } > + } > } > + av_freep(&tf_model->outputs); > + av_freep(&tf_model->output_tensors); > av_freep(&tf_model); > av_freep(model); > } > diff --git a/libavfilter/dnn_backend_tf.h b/libavfilter/dnn_backend_tf.h > index 47a24ec..07877b1 100644 > --- a/libavfilter/dnn_backend_tf.h > +++ b/libavfilter/dnn_backend_tf.h > @@ -31,7 +31,7 @@ > > DNNModel *ff_dnn_load_model_tf(const char *model_filename); > > -DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData > *output); > +DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData > *outputs, uint32_t nb_output); > > void ff_dnn_free_model_tf(DNNModel **model); > > diff --git a/libavfilter/dnn_interface.h b/libavfilter/dnn_interface.h > index 822f6e5..73d226e 100644 > --- a/libavfilter/dnn_interface.h > +++ b/libavfilter/dnn_interface.h > @@ -26,6 +26,8 @@ > #ifndef AVFILTER_DNN_INTERFACE_H > #define AVFILTER_DNN_INTERFACE_H > > +#include <stdint.h> > + > typedef enum {DNN_SUCCESS, DNN_ERROR} DNNReturnType; > > typedef enum {DNN_NATIVE, DNN_TF} DNNBackendType; > @@ -40,7 +42,7 @@ typedef struct DNNModel{ > void *model; > // Sets model input and output. > // Should be called at least once before model execution. > - DNNReturnType (*set_input_output)(void *model, DNNData *input, const > char *input_name, const char *output_name); > + DNNReturnType (*set_input_output)(void *model, DNNData *input, const > char *input_name, const char **output_names, uint32_t nb_output); > } DNNModel; > > // Stores pointers to functions for loading, executing, freeing DNN models > for one of the backends. > @@ -48,7 +50,7 @@ typedef struct DNNModule{ > // Loads model and parameters from given file. Returns NULL if it is not > possible. > DNNModel *(*load_model)(const char *model_filename); > // Executes model with specified input and output. Returns DNN_ERROR > otherwise. > - DNNReturnType (*execute_model)(const DNNModel *model, DNNData *output); > + DNNReturnType (*execute_model)(const DNNModel *model, DNNData *outputs, > uint32_t nb_output); > // Frees memory allocated for model. > void (*free_model)(DNNModel **model); > } DNNModule; > diff --git a/libavfilter/vf_sr.c b/libavfilter/vf_sr.c > index 53bd8ea..b4d4165 100644 > --- a/libavfilter/vf_sr.c > +++ b/libavfilter/vf_sr.c > @@ -117,18 +117,19 @@ static int config_props(AVFilterLink *inlink) > AVFilterLink *outlink = context->outputs[0]; > DNNReturnType result; > int sws_src_h, sws_src_w, sws_dst_h, sws_dst_w; > + const char *model_output_name = "y"; > > sr_context->input.width = inlink->w * sr_context->scale_factor; > sr_context->input.height = inlink->h * sr_context->scale_factor; > sr_context->input.channels = 1; > > - result = (sr_context->model->set_input_output)(sr_context->model->model, > &sr_context->input, "x", "y"); > + result = (sr_context->model->set_input_output)(sr_context->model->model, > &sr_context->input, "x", &model_output_name, 1); > if (result != DNN_SUCCESS){ > av_log(context, AV_LOG_ERROR, "could not set input and output for > the model\n"); > return AVERROR(EIO); > } > > - result = (sr_context->dnn_module->execute_model)(sr_context->model, > &sr_context->output); > + result = (sr_context->dnn_module->execute_model)(sr_context->model, > &sr_context->output, 1); > if (result != DNN_SUCCESS){ > av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n"); > return AVERROR(EIO); > @@ -137,12 +138,12 @@ static int config_props(AVFilterLink *inlink) > if (sr_context->input.height != sr_context->output.height || > sr_context->input.width != sr_context->output.width){ > sr_context->input.width = inlink->w; > sr_context->input.height = inlink->h; > - result = > (sr_context->model->set_input_output)(sr_context->model->model, > &sr_context->input, "x", "y"); > + result = > (sr_context->model->set_input_output)(sr_context->model->model, > &sr_context->input, "x", &model_output_name, 1); > if (result != DNN_SUCCESS){ > av_log(context, AV_LOG_ERROR, "could not set input and output > for the model\n"); > return AVERROR(EIO); > } > - result = (sr_context->dnn_module->execute_model)(sr_context->model, > &sr_context->output); > + result = (sr_context->dnn_module->execute_model)(sr_context->model, > &sr_context->output, 1); > if (result != DNN_SUCCESS){ > av_log(context, AV_LOG_ERROR, "failed to execute loaded > model\n"); > return AVERROR(EIO); > @@ -259,7 +260,7 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in) > } > av_frame_free(&in); > > - dnn_result = (sr_context->dnn_module->execute_model)(sr_context->model, > &sr_context->output); > + dnn_result = (sr_context->dnn_module->execute_model)(sr_context->model, > &sr_context->output, 1); > if (dnn_result != DNN_SUCCESS){ > av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n"); > return AVERROR(EIO); > -- > 2.7.4 >
LGTM. > _______________________________________________ > ffmpeg-devel mailing list > ffmpeg-devel@ffmpeg.org > https://ffmpeg.org/mailman/listinfo/ffmpeg-devel > > To unsubscribe, visit link above, or email > ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe". _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel To unsubscribe, visit link above, or email ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".