Em qua, 24 de abr de 2019 às 23:14, Guo, Yejun <yejun....@intel.com> escreveu: > > Currently, within interface set_input_output, the dims/memory of the > tensorflow > dnn model output is determined by executing the model with zero input, > actually, the output dims might vary with different input data for networks > such as object detection models faster-rcnn, ssd and yolo. > > This patch moves the logic from set_input_output to execute_model which > is suitable for all the cases. Since interface changed, and so > dnn_backend_native > also changes. > > In vf_sr.c, it knows it's srcnn or espcn by executing the model with zero > input, > so execute_model has to be called in function config_props > > Signed-off-by: Guo, Yejun <yejun....@intel.com> > --- > libavfilter/dnn_backend_native.c | 14 +++++----- > libavfilter/dnn_backend_native.h | 2 +- > libavfilter/dnn_backend_tf.c | 56 > ++++++++++++++++------------------------ > libavfilter/dnn_backend_tf.h | 2 +- > libavfilter/dnn_interface.h | 6 ++--- > libavfilter/vf_sr.c | 20 +++++++++++--- > 6 files changed, 51 insertions(+), 49 deletions(-) > > diff --git a/libavfilter/dnn_backend_native.c > b/libavfilter/dnn_backend_native.c > index fe43116..18735c0 100644 > --- a/libavfilter/dnn_backend_native.c > +++ b/libavfilter/dnn_backend_native.c > @@ -25,7 +25,7 @@ > > #include "dnn_backend_native.h" > > -static DNNReturnType set_input_output_native(void *model, DNNData *input, > const char *input_name, DNNData *output, const char *output_name) > +static DNNReturnType set_input_output_native(void *model, DNNData *input, > const char *input_name, const char *output_name) > { > ConvolutionalNetwork *network = (ConvolutionalNetwork *)model; > InputParams *input_params; > @@ -81,11 +81,6 @@ static DNNReturnType set_input_output_native(void *model, > DNNData *input, const > } > } > > - output->data = network->layers[network->layers_num - 1].output; > - output->height = cur_height; > - output->width = cur_width; > - output->channels = cur_channels; > - > return DNN_SUCCESS; > } > > @@ -280,7 +275,7 @@ static void depth_to_space(const float *input, float > *output, int block_size, in > } > } > > -DNNReturnType ff_dnn_execute_model_native(const DNNModel *model) > +DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData > *output) > { > ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model; > int cur_width, cur_height, cur_channels; > @@ -322,6 +317,11 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel > *model) > } > } > > + output->data = network->layers[network->layers_num - 1].output; > + output->height = cur_height; > + output->width = cur_width; > + output->channels = cur_channels; > + > return DNN_SUCCESS; > } > > diff --git a/libavfilter/dnn_backend_native.h > b/libavfilter/dnn_backend_native.h > index 51d4cac..adaf4a7 100644 > --- a/libavfilter/dnn_backend_native.h > +++ b/libavfilter/dnn_backend_native.h > @@ -63,7 +63,7 @@ typedef struct ConvolutionalNetwork{ > > DNNModel *ff_dnn_load_model_native(const char *model_filename); > > -DNNReturnType ff_dnn_execute_model_native(const DNNModel *model); > +DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData > *output); > > void ff_dnn_free_model_native(DNNModel **model); > > diff --git a/libavfilter/dnn_backend_tf.c b/libavfilter/dnn_backend_tf.c > index a838907..7bee45c 100644 > --- a/libavfilter/dnn_backend_tf.c > +++ b/libavfilter/dnn_backend_tf.c > @@ -35,7 +35,6 @@ typedef struct TFModel{ > TF_Status *status; > TF_Output input, output; > TF_Tensor *input_tensor; > - DNNData *output_data; > } TFModel; > > static void free_buffer(void *data, size_t length) > @@ -76,13 +75,12 @@ static TF_Buffer *read_graph(const char *model_filename) > return graph_buf; > } > > -static DNNReturnType set_input_output_tf(void *model, DNNData *input, const > char *input_name, DNNData *output, const char *output_name) > +static DNNReturnType set_input_output_tf(void *model, DNNData *input, const > char *input_name, const char *output_name) > { > TFModel *tf_model = (TFModel *)model; > int64_t input_dims[] = {1, input->height, input->width, input->channels}; > TF_SessionOptions *sess_opts; > const TF_Operation *init_op = TF_GraphOperationByName(tf_model->graph, > "init"); > - TF_Tensor *output_tensor; > > // Input operation > tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, > input_name); > @@ -132,26 +130,6 @@ static DNNReturnType set_input_output_tf(void *model, > DNNData *input, const char > } > } > > - // Execute network to get output height, width and number of channels > - TF_SessionRun(tf_model->session, NULL, > - &tf_model->input, &tf_model->input_tensor, 1, > - &tf_model->output, &output_tensor, 1, > - NULL, 0, NULL, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - return DNN_ERROR; > - } > - else{ > - output->height = TF_Dim(output_tensor, 1); > - output->width = TF_Dim(output_tensor, 2); > - output->channels = TF_Dim(output_tensor, 3); > - output->data = av_malloc(output->height * output->width * > output->channels * sizeof(float)); > - if (!output->data){ > - return DNN_ERROR; > - } > - tf_model->output_data = output; > - TF_DeleteTensor(output_tensor); > - } > - > return DNN_SUCCESS; > } > > @@ -489,7 +467,6 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename) > } > tf_model->session = NULL; > tf_model->input_tensor = NULL; > - tf_model->output_data = NULL; > > if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){ > if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){ > @@ -508,10 +485,12 @@ DNNModel *ff_dnn_load_model_tf(const char > *model_filename) > > > > -DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model) > +DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *output) > { > TFModel *tf_model = (TFModel *)model->model; > TF_Tensor *output_tensor; > + uint64_t count; > + uint64_t old_count = output->height * output->width * output->channels * > sizeof(float); > > TF_SessionRun(tf_model->session, NULL, > &tf_model->input, &tf_model->input_tensor, 1, > @@ -521,14 +500,26 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel > *model) > if (TF_GetCode(tf_model->status) != TF_OK){ > return DNN_ERROR; > } > - else{ > - memcpy(tf_model->output_data->data, TF_TensorData(output_tensor), > - tf_model->output_data->height * tf_model->output_data->width * > - tf_model->output_data->channels * sizeof(float)); > - TF_DeleteTensor(output_tensor); > > - return DNN_SUCCESS; > + output->height = TF_Dim(output_tensor, 1); > + output->width = TF_Dim(output_tensor, 2); > + output->channels = TF_Dim(output_tensor, 3); > + count = output->height * output->width * output->channels * > sizeof(float); > + if (output->data) { > + if (count > old_count) { > + av_freep(&output->data); > + } > + } > + if (!output->data) { > + output->data = av_malloc(count); > + if (!output->data){ > + return DNN_ERROR; > + } > } > + memcpy(output->data, TF_TensorData(output_tensor), count); > + TF_DeleteTensor(output_tensor); > + > + return DNN_SUCCESS; > } > > void ff_dnn_free_model_tf(DNNModel **model) > @@ -550,9 +541,6 @@ void ff_dnn_free_model_tf(DNNModel **model) > if (tf_model->input_tensor){ > TF_DeleteTensor(tf_model->input_tensor); > } > - if (tf_model->output_data){ > - av_freep(&tf_model->output_data->data); > - } > av_freep(&tf_model); > av_freep(model); > } > diff --git a/libavfilter/dnn_backend_tf.h b/libavfilter/dnn_backend_tf.h > index 7ba84f4..47a24ec 100644 > --- a/libavfilter/dnn_backend_tf.h > +++ b/libavfilter/dnn_backend_tf.h > @@ -31,7 +31,7 @@ > > DNNModel *ff_dnn_load_model_tf(const char *model_filename); > > -DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model); > +DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData > *output); > > void ff_dnn_free_model_tf(DNNModel **model); > > diff --git a/libavfilter/dnn_interface.h b/libavfilter/dnn_interface.h > index 0390e39..822f6e5 100644 > --- a/libavfilter/dnn_interface.h > +++ b/libavfilter/dnn_interface.h > @@ -38,9 +38,9 @@ typedef struct DNNData{ > typedef struct DNNModel{ > // Stores model that can be different for different backends. > void *model; > - // Sets model input and output, while allocating additional memory for > intermediate calculations. > + // Sets model input and output. > // Should be called at least once before model execution. > - DNNReturnType (*set_input_output)(void *model, DNNData *input, const > char *input_name, DNNData *output, const char *output_name); > + DNNReturnType (*set_input_output)(void *model, DNNData *input, const > char *input_name, const char *output_name); > } DNNModel; > > // Stores pointers to functions for loading, executing, freeing DNN models > for one of the backends. > @@ -48,7 +48,7 @@ typedef struct DNNModule{ > // Loads model and parameters from given file. Returns NULL if it is not > possible. > DNNModel *(*load_model)(const char *model_filename); > // Executes model with specified input and output. Returns DNN_ERROR > otherwise. > - DNNReturnType (*execute_model)(const DNNModel *model); > + DNNReturnType (*execute_model)(const DNNModel *model, DNNData *output); > // Frees memory allocated for model. > void (*free_model)(DNNModel **model); > } DNNModule; > diff --git a/libavfilter/vf_sr.c b/libavfilter/vf_sr.c > index 085ac19..7c92730 100644 > --- a/libavfilter/vf_sr.c > +++ b/libavfilter/vf_sr.c > @@ -122,20 +122,31 @@ static int config_props(AVFilterLink *inlink) > sr_context->input.height = inlink->h * sr_context->scale_factor; > sr_context->input.channels = 1; > > - result = (sr_context->model->set_input_output)(sr_context->model->model, > &sr_context->input, "x", &sr_context->output, "y"); > + result = (sr_context->model->set_input_output)(sr_context->model->model, > &sr_context->input, "x", "y"); > if (result != DNN_SUCCESS){ > av_log(context, AV_LOG_ERROR, "could not set input and output for > the model\n"); > return AVERROR(EIO); > } > > + result = (sr_context->dnn_module->execute_model)(sr_context->model, > &sr_context->output); > + if (result != DNN_SUCCESS){ > + av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n"); > + return AVERROR(EIO); > + } > + > if (sr_context->input.height != sr_context->output.height || > sr_context->input.width != sr_context->output.width){ > sr_context->input.width = inlink->w; > sr_context->input.height = inlink->h; > - result = > (sr_context->model->set_input_output)(sr_context->model->model, > &sr_context->input, "x", &sr_context->output, "y"); > + result = > (sr_context->model->set_input_output)(sr_context->model->model, > &sr_context->input, "x", "y"); > if (result != DNN_SUCCESS){ > av_log(context, AV_LOG_ERROR, "could not set input and output > for the model\n"); > return AVERROR(EIO); > } > + result = (sr_context->dnn_module->execute_model)(sr_context->model, > &sr_context->output); > + if (result != DNN_SUCCESS){ > + av_log(context, AV_LOG_ERROR, "failed to execute loaded > model\n"); > + return AVERROR(EIO); > + } > sr_context->scale_factor = 0; > } > outlink->h = sr_context->output.height; > @@ -248,7 +259,7 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in) > } > av_frame_free(&in); > > - dnn_result = (sr_context->dnn_module->execute_model)(sr_context->model); > + dnn_result = (sr_context->dnn_module->execute_model)(sr_context->model, > &sr_context->output); > if (dnn_result != DNN_SUCCESS){ > av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n"); > return AVERROR(EIO); > @@ -266,6 +277,9 @@ static av_cold void uninit(AVFilterContext *context) > int i; > SRContext *sr_context = context->priv; > > + if (sr_context->backend_type == DNN_TF) > + av_freep(&sr_context->output.data); > + > if (sr_context->dnn_module){ > (sr_context->dnn_module->free_model)(&sr_context->model); > av_freep(&sr_context->dnn_module); > -- > 2.7.4 >
LGTM. > _______________________________________________ > ffmpeg-devel mailing list > ffmpeg-devel@ffmpeg.org > https://ffmpeg.org/mailman/listinfo/ffmpeg-devel > > To unsubscribe, visit link above, or email > ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe". _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel To unsubscribe, visit link above, or email ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".