On 10 November 2017 at 21:09, Aurelien Jacobs <au...@gnuage.org> wrote:
> The encoder was reverse engineered from binary library and from > EP0398973B1 patent (long expired). > The decoder was simply deduced from the encoder. > --- > doc/general.texi | 2 + > libavcodec/Makefile | 2 + > libavcodec/allcodecs.c | 1 + > libavcodec/aptx.c | 860 ++++++++++++++++++++++++++++++ > ++++++++++++++++++ > libavcodec/avcodec.h | 1 + > libavcodec/codec_desc.c | 7 + > 6 files changed, 873 insertions(+) > create mode 100644 libavcodec/aptx.c > > diff --git a/doc/general.texi b/doc/general.texi > index e6ae277d23..de4efee913 100644 > --- a/doc/general.texi > +++ b/doc/general.texi > @@ -993,6 +993,8 @@ following image formats are supported: > @item Amazing Studio PAF Audio @tab @tab X > @item Apple lossless audio @tab X @tab X > @tab QuickTime fourcc 'alac' > +@item aptX @tab X @tab X > + @tab Used in Bluetooth A2DP > @item ATRAC1 @tab @tab X > @item ATRAC3 @tab @tab X > @item ATRAC3+ @tab @tab X > diff --git a/libavcodec/Makefile b/libavcodec/Makefile > index 45f4db5939..95c843dee7 100644 > --- a/libavcodec/Makefile > +++ b/libavcodec/Makefile > @@ -188,6 +188,8 @@ OBJS-$(CONFIG_AMV_ENCODER) += mjpegenc.o > mjpegenc_common.o \ > OBJS-$(CONFIG_ANM_DECODER) += anm.o > OBJS-$(CONFIG_ANSI_DECODER) += ansi.o cga_data.o > OBJS-$(CONFIG_APE_DECODER) += apedec.o > +OBJS-$(CONFIG_APTX_DECODER) += aptx.o > +OBJS-$(CONFIG_APTX_ENCODER) += aptx.o > OBJS-$(CONFIG_APNG_DECODER) += png.o pngdec.o pngdsp.o > OBJS-$(CONFIG_APNG_ENCODER) += png.o pngenc.o > OBJS-$(CONFIG_SSA_DECODER) += assdec.o ass.o > diff --git a/libavcodec/allcodecs.c b/libavcodec/allcodecs.c > index d96e499ba7..463f7ed64e 100644 > --- a/libavcodec/allcodecs.c > +++ b/libavcodec/allcodecs.c > @@ -406,6 +406,7 @@ static void register_all(void) > REGISTER_DECODER(AMRNB, amrnb); > REGISTER_DECODER(AMRWB, amrwb); > REGISTER_DECODER(APE, ape); > + REGISTER_ENCDEC (APTX, aptx); > REGISTER_DECODER(ATRAC1, atrac1); > REGISTER_DECODER(ATRAC3, atrac3); > REGISTER_DECODER(ATRAC3AL, atrac3al); > diff --git a/libavcodec/aptx.c b/libavcodec/aptx.c > new file mode 100644 > index 0000000000..d09ce8f838 > --- /dev/null > +++ b/libavcodec/aptx.c > @@ -0,0 +1,860 @@ > +/* > + * Audio Processing Technology codec for Bluetooth (aptX) > + * > + * Copyright (C) 2017 Aurelien Jacobs <au...@gnuage.org> > + * > + * This file is part of FFmpeg. > + * > + * FFmpeg is free software; you can redistribute it and/or > + * modify it under the terms of the GNU Lesser General Public > + * License as published by the Free Software Foundation; either > + * version 2.1 of the License, or (at your option) any later version. > + * > + * FFmpeg is distributed in the hope that it will be useful, > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > + * Lesser General Public License for more details. > + * > + * You should have received a copy of the GNU Lesser General Public > + * License along with FFmpeg; if not, write to the Free Software > + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA > 02110-1301 USA > + */ > + > +#include "libavutil/intreadwrite.h" > +#include "avcodec.h" > +#include "internal.h" > +#include "mathops.h" > +#include "audio_frame_queue.h" > + > + > +enum channels { > + LEFT, > + RIGHT, > + NB_CHANNELS > +}; > + > +enum subbands { > + LF, // Low Frequency (0-5.5 kHz) > + MLF, // Medium-Low Frequency (5.5-11kHz) > + MHF, // Medium-High Frequency (11-16.5kHz) > + HF, // High Frequency (16.5-22kHz) > + NB_SUBBANDS > +}; > + > +#define NB_FILTERS 2 > +#define FILTER_TAPS 16 > + > +typedef struct { > + int pos; > + int32_t buffer[2*FILTER_TAPS]; > +} FilterSignal; > + > +typedef struct { > + FilterSignal outer_filter_signal[NB_FILTERS]; > + FilterSignal inner_filter_signal[NB_FILTERS][NB_FILTERS]; > +} QMFAnalysis; > + > +typedef struct { > + int32_t quantized_sample; > + int32_t quantized_sample_parity_change; > + int32_t error; > +} Quantize; > + > +typedef struct { > + int32_t quantization_factor; > + int32_t factor_select; > + int32_t reconstructed_difference; > +} InvertQuantize; > + > +typedef struct { > + int32_t prev_sign[2]; > + int32_t s_weight[2]; > + int32_t d_weight[24]; > + int32_t pos; > + int32_t reconstructed_differences[48]; > + int32_t previous_reconstructed_sample; > + int32_t predicted_difference; > + int32_t predicted_sample; > +} Prediction; > + > +typedef struct { > + int32_t codeword_history; > + int32_t dither_parity; > + int32_t dither[NB_SUBBANDS]; > + > + QMFAnalysis qmf; > + Quantize quantize[NB_SUBBANDS]; > + InvertQuantize invert_quantize[NB_SUBBANDS]; > + Prediction prediction[NB_SUBBANDS]; > +} Channel; > + > +typedef struct { > + int32_t sync_idx; > + Channel channels[NB_CHANNELS]; > + AudioFrameQueue afq; > +} AptXContext; > + > + > +static const int32_t quantize_intervals_LF[65] = { > + -9948, 9948, 29860, 49808, 69822, 89926, 110144, > 130502, > + 151026, 171738, 192666, 213832, 235264, 256982, 279014, > 301384, > + 324118, 347244, 370790, 394782, 419250, 444226, 469742, > 495832, > + 522536, 549890, 577936, 606720, 636290, 666700, 698006, > 730270, > + 763562, 797958, 833538, 870398, 908640, 948376, 989740, > 1032874, > + 1077948, 1125150, 1174700, 1226850, 1281900, 1340196, 1402156, > 1468282, > + 1539182, 1615610, 1698514, 1789098, 1888944, 2000168, 2125700, > 2269750, > + 2438670, 2642660, 2899462, 3243240, 3746078, 4535138, 5664098, > 7102424, > + 8897462, > +}; > +static const int32_t invert_quantize_dither_factors_LF[65] = { > + 9948, 9948, 9962, 9988, 10026, 10078, 10142, 10218, > + 10306, 10408, 10520, 10646, 10784, 10934, 11098, 11274, > + 11462, 11664, 11880, 12112, 12358, 12618, 12898, 13194, > + 13510, 13844, 14202, 14582, 14988, 15422, 15884, 16380, > + 16912, 17484, 18098, 18762, 19480, 20258, 21106, 22030, > + 23044, 24158, 25390, 26760, 28290, 30008, 31954, 34172, > + 36728, 39700, 43202, 47382, 52462, 58762, 66770, 77280, > + 91642, 112348, 144452, 199326, 303512, 485546, 643414, 794914, > + 1000124, > +}; > +static const int32_t quantize_dither_factors_LF[65] = { > + 0, 4, 7, 10, 13, 16, 19, 22, > + 26, 28, 32, 35, 38, 41, 44, 47, > + 51, 54, 58, 62, 65, 70, 74, 79, > + 84, 90, 95, 102, 109, 116, 124, 133, > + 143, 154, 166, 180, 195, 212, 231, 254, > + 279, 308, 343, 383, 430, 487, 555, 639, > + 743, 876, 1045, 1270, 1575, 2002, 2628, 3591, > + 5177, 8026, 13719, 26047, 45509, 39467, 37875, 51303, > + 0, > +}; > +static const int16_t quantize_factor_select_offset_LF[65] = { > + 0, -21, -19, -17, -15, -12, -10, -8, > + -6, -4, -1, 1, 3, 6, 8, 10, > + 13, 15, 18, 20, 23, 26, 29, 31, > + 34, 37, 40, 43, 47, 50, 53, 57, > + 60, 64, 68, 72, 76, 80, 85, 89, > + 94, 99, 105, 110, 116, 123, 129, 136, > + 144, 152, 161, 171, 182, 194, 207, 223, > + 241, 263, 291, 328, 382, 467, 522, 522, > + 522, > +}; > + > + > +static const int32_t quantize_intervals_MLF[9] = { > + -89806, 89806, 278502, 494338, 759442, 1113112, 1652322, 2720256, > 5190186, > +}; > +static const int32_t invert_quantize_dither_factors_MLF[9] = { > + 89806, 89806, 98890, 116946, 148158, 205512, 333698, 734236, 1735696, > +}; > +static const int32_t quantize_dither_factors_MLF[9] = { > + 0, 2271, 4514, 7803, 14339, 32047, 100135, 250365, 0, > +}; > +static const int16_t quantize_factor_select_offset_MLF[9] = { > + 0, -14, 6, 29, 58, 96, 154, 270, 521, > +}; > + > + > +static const int32_t quantize_intervals_MHF[3] = { > + -194080, 194080, 890562, > +}; > +static const int32_t invert_quantize_dither_factors_MHF[3] = { > + 194080, 194080, 502402, > +}; > +static const int32_t quantize_dither_factors_MHF[3] = { > + 0, 77081, 0, > +}; > +static const int16_t quantize_factor_select_offset_MHF[3] = { > + 0, -33, 136, > +}; > + > + > +static const int32_t quantize_intervals_HF[5] = { > + -163006, 163006, 542708, 1120554, 2669238, > +}; > +static const int32_t invert_quantize_dither_factors_HF[5] = { > + 163006, 163006, 216698, 361148, 1187538, > +}; > +static const int32_t quantize_dither_factors_HF[5] = { > + 0, 13423, 36113, 206598, 0, > +}; > +static const int16_t quantize_factor_select_offset_HF[5] = { > + 0, -8, 33, 95, 262, > +}; > + > +typedef const struct { > + const int32_t *quantize_intervals; > + const int32_t *invert_quantize_dither_factors; > + const int32_t *quantize_dither_factors; > + const int16_t *quantize_factor_select_offset; > + int tables_size; > + int32_t quantized_bits; > + int32_t prediction_order; > +} ConstTables; > + > +static ConstTables tables[NB_SUBBANDS] = { > + [LF] = { quantize_intervals_LF, > + invert_quantize_dither_factors_LF, > + quantize_dither_factors_LF, > + quantize_factor_select_offset_LF, > + FF_ARRAY_ELEMS(quantize_intervals_LF), > + 7, 24 }, > + [MLF] = { quantize_intervals_MLF, > + invert_quantize_dither_factors_MLF, > + quantize_dither_factors_MLF, > + quantize_factor_select_offset_MLF, > + FF_ARRAY_ELEMS(quantize_intervals_MLF), > + 4, 12 }, > + [MHF] = { quantize_intervals_MHF, > + invert_quantize_dither_factors_MHF, > + quantize_dither_factors_MHF, > + quantize_factor_select_offset_MHF, > + FF_ARRAY_ELEMS(quantize_intervals_MHF), > + 2, 6 }, > + [HF] = { quantize_intervals_HF, > + invert_quantize_dither_factors_HF, > + quantize_dither_factors_HF, > + quantize_factor_select_offset_HF, > + FF_ARRAY_ELEMS(quantize_intervals_HF), > + 3, 12 }, > +}; > + > +static const int16_t quantization_factors[32] = { > + 2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383, > + 2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834, > + 2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371, > + 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008, > +}; > + > + > +/* Rounded right shift with optionnal clipping */ > +#define RSHIFT_SIZE(size) > \ > +av_always_inline > \ > +static int##size##_t rshift##size(int##size##_t value, int shift) > \ > +{ > \ > + int##size##_t rounding = (int##size##_t)1 << (shift - 1); > \ > + int##size##_t mask = ((int##size##_t)1 << (shift + 1)) - 1; > \ > + return ((value + rounding) >> shift) - ((value & mask) == rounding); > \ > +} > \ > +av_always_inline > \ > +static int##size##_t rshift##size##_clip24(int##size##_t value, int > shift) \ > +{ > \ > + return av_clip_intp2(rshift##size(value, shift), 23); > \ > +} > +RSHIFT_SIZE(32) > +RSHIFT_SIZE(64) > + > + > +av_always_inline > +static void aptx_update_codeword_history(Channel *channel) > +{ > + int32_t cw = ((channel->quantize[0].quantized_sample & 3) << 0) + > + ((channel->quantize[1].quantized_sample & 2) << 1) + > + ((channel->quantize[2].quantized_sample & 1) << 3); > + channel->codeword_history = (cw << 8) + (channel->codeword_history << > 4); > +} > + > +static void aptx_generate_dither(Channel *channel) > +{ > + int subband; > + int64_t m; > + int32_t d; > + > + aptx_update_codeword_history(channel); > + > + m = (int64_t)5184443 * (channel->codeword_history >> 7); > + d = (m << 2) + (m >> 22); > + for (subband = 0; subband < NB_SUBBANDS; subband++) > + channel->dither[subband] = d << (23 - 5*subband); > + channel->dither_parity = (d >> 25) & 1; > +} > + > +/* > + * Convolution filter coefficients for the outer QMF of the QMF tree. > + * The 2 sets are a mirror of each other. > + */ > +static const int32_t aptx_qmf_outer_coeffs[NB_FILTERS][FILTER_TAPS] = { > + { > + 730, -413, -9611, 43626, -121026, 269973, -585547, 2801966, > + 697128, -160481, 27611, 8478, -10043, 3511, 688, -897, > + }, > + { > + -897, 688, 3511, -10043, 8478, 27611, -160481, 697128, > + 2801966, -585547, 269973, -121026, 43626, -9611, -413, 730, > + }, > +}; > + > +/* > + * Convolution filter coefficients for the inner QMF of the QMF tree. > + * The 2 sets are a mirror of each other. > + */ > +static const int32_t aptx_qmf_inner_coeffs[NB_FILTERS][FILTER_TAPS] = { > + { > + 1033, -584, -13592, 61697, -171156, 381799, -828088, 3962579, > + 985888, -226954, 39048, 11990, -14203, 4966, 973, -1268, > + }, > + { > + -1268, 973, 4966, -14203, 11990, 39048, -226954, 985888, > + 3962579, -828088, 381799, -171156, 61697, -13592, -584, 1033, > + }, > +}; > + > +/* > + * Push one sample into a circular signal buffer. > + */ > +av_always_inline > +static void aptx_qmf_filter_signal_push(FilterSignal *signal, int32_t > sample) > +{ > + signal->buffer[signal->pos ] = sample; > + signal->buffer[signal->pos+FILTER_TAPS] = sample; > + signal->pos = (signal->pos + 1) & (FILTER_TAPS - 1); > +} > + > +/* > + * Compute the convolution of the signal with the coefficients, and reduce > + * to 24 bits by applying the specified right shifting. > + */ > +av_always_inline > +static int32_t aptx_qmf_convolution(FilterSignal *signal, > + const int32_t coeffs[FILTER_TAPS], > + int shift) > +{ > + int32_t *sig = &signal->buffer[signal->pos]; > + int64_t e = 0; > + int i; > + > + for (i = 0; i < FILTER_TAPS; i++) > + e += MUL64(sig[i], coeffs[i]); > + > + return rshift64_clip24(e, shift); > +} > + > +/* > + * Half-band QMF analysis filter realized with a polyphase FIR filter. > + * Split into 2 subbands and downsample by 2. > + * So for each pair of samples that goes in, one sample goes out, > + * split into 2 separate subbands. > + */ > +av_always_inline > +static void aptx_qmf_polyphase_analysis(FilterSignal signal[NB_FILTERS], > + const int32_t > coeffs[NB_FILTERS][FILTER_TAPS], > + int shift, > + int32_t samples[NB_FILTERS], > + int32_t *low_subband_output, > + int32_t *high_subband_output) > +{ > + int32_t subbands[NB_FILTERS]; > + int i; > + > + for (i = 0; i < NB_FILTERS; i++) { > + aptx_qmf_filter_signal_push(&signal[i], samples[NB_FILTERS-1-i]); > + subbands[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift); > + } > + > + *low_subband_output = av_clip_intp2(subbands[0] + subbands[1], 23); > + *high_subband_output = av_clip_intp2(subbands[0] - subbands[1], 23); > +} > + > +/* > + * Two stage QMF analysis tree. > + * Split 4 input samples into 4 subbands and downsample by 4. > + * So for each group of 4 samples that goes in, one sample goes out, > + * split into 4 separate subbands. > + */ > +static void aptx_qmf_tree_analysis(QMFAnalysis *qmf, > + int32_t samples[4], > + int32_t subband_samples[4]) > +{ > + int32_t intermediate_samples[4]; > + int i; > + > + /* Split 4 input samples into 2 intermediate subbands downsampled to > 2 samples */ > + for (i = 0; i < 2; i++) > + aptx_qmf_polyphase_analysis(qmf->outer_filter_signal, > + aptx_qmf_outer_coeffs, 23, > + &samples[2*i], > + &intermediate_samples[0+i], > + &intermediate_samples[2+i]); > + > + /* Split 2 intermediate subband samples into 4 final subbands > downsampled to 1 sample */ > + for (i = 0; i < 2; i++) > + aptx_qmf_polyphase_analysis(qmf->inner_filter_signal[i], > + aptx_qmf_inner_coeffs, 23, > + &intermediate_samples[2*i], > + &subband_samples[2*i+0], > + &subband_samples[2*i+1]); > +} > + > +/* > + * Half-band QMF synthesis filter realized with a polyphase FIR filter. > + * Join 2 subbands and upsample by 2. > + * So for each 2 subbands sample that goes in, a pair of samples goes out. > + */ > +av_always_inline > +static void aptx_qmf_polyphase_synthesis(FilterSignal signal[NB_FILTERS], > + const int32_t > coeffs[NB_FILTERS][FILTER_TAPS], > + int shift, > + int32_t low_subband_input, > + int32_t high_subband_input, > + int32_t samples[NB_FILTERS]) > +{ > + int32_t subbands[NB_FILTERS]; > + int i; > + > + subbands[0] = low_subband_input + high_subband_input; > + subbands[1] = low_subband_input - high_subband_input; > + > + for (i = 0; i < NB_FILTERS; i++) { > + aptx_qmf_filter_signal_push(&signal[i], subbands[1-i]); > + samples[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift); > + } > +} > + > +/* > + * Two stage QMF synthesis tree. > + * Join 4 subbands and upsample by 4. > + * So for each 4 subbands sample that goes in, a group of 4 samples goes > out. > + */ > +static void aptx_qmf_tree_synthesis(QMFAnalysis *qmf, > + int32_t subband_samples[4], > + int32_t samples[4]) > +{ > + int32_t intermediate_samples[4]; > + int i; > + > + /* Join 4 subbands into 2 intermediate subbands upsampled to 2 > samples. */ > + for (i = 0; i < 2; i++) > + aptx_qmf_polyphase_synthesis(qmf->inner_filter_signal[i], > + aptx_qmf_inner_coeffs, 22, > + subband_samples[2*i+0], > + subband_samples[2*i+1], > + &intermediate_samples[2*i]); > + > + /* Join 2 samples from intermediate subbands upsampled to 4 samples. > */ > + for (i = 0; i < 2; i++) > + aptx_qmf_polyphase_synthesis(qmf->outer_filter_signal, > + aptx_qmf_outer_coeffs, 21, > + intermediate_samples[0+i], > + intermediate_samples[2+i], > + &samples[2*i]); > +} > + > + > +av_always_inline > +static int32_t aptx_bin_search(int32_t value, int32_t factor, > + const int32_t *intervals, int32_t > nb_intervals) > +{ > + int32_t idx = 0; > + int i; > + > + for (i = nb_intervals >> 1; i > 0; i >>= 1) > + if (MUL64(factor, intervals[idx + i]) <= ((int64_t)value << 24)) > + idx += i; > + > + return idx; > +} > + > +static void aptx_quantize_difference(Quantize *quantize, > + int32_t sample_difference, > + int32_t dither, > + int32_t quantization_factor, > + ConstTables *tables) > +{ > + const int32_t *intervals = tables->quantize_intervals; > + int32_t quantized_sample, dithered_sample, parity_change; > + int32_t d, mean, interval, inv; > + int64_t error; > + > + quantized_sample = aptx_bin_search(FFABS(sample_difference) >> 4, > + quantization_factor, > + intervals, tables->tables_size); > + > + d = rshift32_clip24(MULH(dither, dither), 7) - (1 << 23); > + d = rshift64(MUL64(d, tables->quantize_dither_factors[quantized_sample]), > 23); > + > + intervals += quantized_sample; > + mean = (intervals[1] + intervals[0]) / 2; > + interval = (intervals[1] - intervals[0]) * (-(sample_difference < 0) > | 1); > + > + dithered_sample = rshift64_clip24(MUL64(dither, interval) + > ((int64_t)(mean + d) << 32), 32); > + error = ((int64_t)FFABS(sample_difference) << 20) - > MUL64(dithered_sample, quantization_factor); > + quantize->error = FFABS(rshift64(error, 23)); > + > + parity_change = quantized_sample; > + if (error < 0) > + quantized_sample--; > + else > + parity_change--; > + > + inv = -(sample_difference < 0); > + quantize->quantized_sample = quantized_sample ^ inv; > + quantize->quantized_sample_parity_change = parity_change ^ inv; > +} > + > +static void aptx_encode_channel(Channel *channel, int32_t samples[4]) > +{ > + int32_t subband_samples[4]; > + int subband; > + aptx_qmf_tree_analysis(&channel->qmf, samples, subband_samples); > + aptx_generate_dither(channel); > + for (subband = 0; subband < NB_SUBBANDS; subband++) { > + int32_t diff = av_clip_intp2(subband_samples[subband] - > channel->prediction[subband].predicted_sample, 23); > + aptx_quantize_difference(&channel->quantize[subband], diff, > + channel->dither[subband], > + channel->invert_quantize[ > subband].quantization_factor, > + &tables[subband]); > + } > +} > + > +static void aptx_decode_channel(Channel *channel, int32_t samples[4]) > +{ > + int32_t subband_samples[4]; > + int subband; > + for (subband = 0; subband < NB_SUBBANDS; subband++) > + subband_samples[subband] = channel->prediction[subband]. > previous_reconstructed_sample; > + aptx_qmf_tree_synthesis(&channel->qmf, subband_samples, samples); > +} > + > + > +static void aptx_invert_quantization(InvertQuantize *invert_quantize, > + int32_t quantized_sample, int32_t > dither, > + ConstTables *tables) > +{ > + int32_t qr, idx, shift, factor_select; > + > + idx = (quantized_sample ^ -(quantized_sample < 0)) + 1; > + qr = tables->quantize_intervals[idx] / 2; > + if (quantized_sample < 0) > + qr = -qr; > + > + qr = rshift64_clip24(((int64_t)qr<<32) + MUL64(dither, > tables->invert_quantize_dither_factors[idx]), 32); > + invert_quantize->reconstructed_difference = > MUL64(invert_quantize->quantization_factor, > qr) >> 19; > + > + shift = 24 - tables->quantized_bits; > + > + /* update factor_select */ > + factor_select = 32620 * invert_quantize->factor_select; > + factor_select = rshift32(factor_select + > (tables->quantize_factor_select_offset[idx] > << 15), 15); > + invert_quantize->factor_select = av_clip(factor_select, 0, (shift << > 8) | 0xFF); > + > + /* update quantization factor */ > + idx = (invert_quantize->factor_select & 0xFF) >> 3; > + shift -= invert_quantize->factor_select >> 8; > + invert_quantize->quantization_factor = (quantization_factors[idx] << > 11) >> shift; > +} > + > +static int32_t *aptx_reconstructed_differences_update(Prediction > *prediction, > + int32_t > reconstructed_difference, > + int order) > +{ > + int32_t *rd1 = prediction->reconstructed_differences, *rd2 = rd1 + > order; > + int p = prediction->pos; > + > + rd1[p] = rd2[p]; > + prediction->pos = p = (p + 1) % order; > + rd2[p] = reconstructed_difference; > + return &rd2[p]; > +} > + > +static void aptx_prediction_filtering(Prediction *prediction, > + int32_t reconstructed_difference, > + int order) > +{ > + int32_t reconstructed_sample, predictor, srd0; > + int32_t *reconstructed_differences; > + int64_t predicted_difference = 0; > + int i; > + > + reconstructed_sample = av_clip_intp2(reconstructed_difference + > prediction->predicted_sample, 23); > + predictor = av_clip_intp2((MUL64(prediction->s_weight[0], > prediction->previous_reconstructed_sample) > + + MUL64(prediction->s_weight[1], > reconstructed_sample)) >> 22, 23); > + prediction->previous_reconstructed_sample = reconstructed_sample; > + > + reconstructed_differences = > aptx_reconstructed_differences_update(prediction, > reconstructed_difference, order); > + srd0 = FFDIFFSIGN(reconstructed_difference, 0) << 23; > + for (i = 0; i < order; i++) { > + int32_t srd = FF_SIGNBIT(reconstructed_differences[-i-1]) | 1; > + prediction->d_weight[i] -= rshift32(prediction->d_weight[i] - > srd*srd0, 8); > + predicted_difference += MUL64(reconstructed_differences[-i], > prediction->d_weight[i]); > + } > + > + prediction->predicted_difference = av_clip_intp2(predicted_difference > >> 22, 23); > + prediction->predicted_sample = av_clip_intp2(predictor + > prediction->predicted_difference, 23); > +} > + > +static void aptx_process_subband(InvertQuantize *invert_quantize, > + Prediction *prediction, > + int32_t quantized_sample, int32_t dither, > + ConstTables *tables) > +{ > + int32_t sign, same_sign[2], weight[2], sw1, range; > + > + aptx_invert_quantization(invert_quantize, quantized_sample, dither, > tables); > + > + sign = FFDIFFSIGN(invert_quantize->reconstructed_difference, > + -prediction->predicted_difference); > + same_sign[0] = sign * prediction->prev_sign[0]; > + same_sign[1] = sign * prediction->prev_sign[1]; > + prediction->prev_sign[0] = prediction->prev_sign[1]; > + prediction->prev_sign[1] = sign | 1; > + > + range = 0x100000; > + sw1 = rshift32(-same_sign[1] * prediction->s_weight[1], 1); > + sw1 = (av_clip(sw1, -range, range) & ~0xF) << 4; > + > + range = 0x300000; > + weight[0] = 254 * prediction->s_weight[0] + 0x800000*same_sign[0] + > sw1; > + prediction->s_weight[0] = av_clip(rshift32(weight[0], 8), -range, > range); > + > + range = 0x3C0000 - prediction->s_weight[0]; > + weight[1] = 255 * prediction->s_weight[1] + 0xC00000*same_sign[1]; > + prediction->s_weight[1] = av_clip(rshift32(weight[1], 8), -range, > range); > + > + aptx_prediction_filtering(prediction, > + invert_quantize->reconstructed_difference, > + tables->prediction_order); > +} > + > +static void aptx_invert_quantize_and_prediction(Channel *channel) > +{ > + int subband; > + for (subband = 0; subband < NB_SUBBANDS; subband++) > + aptx_process_subband(&channel->invert_quantize[subband], > + &channel->prediction[subband], > + channel->quantize[subband].quantized_sample, > + channel->dither[subband], > + &tables[subband]); > +} > + > +static int32_t aptx_quantized_parity(Channel *channel) > +{ > + int32_t parity = channel->dither_parity; > + int subband; > + > + for (subband = 0; subband < NB_SUBBANDS; subband++) > + parity ^= channel->quantize[subband].quantized_sample; > + > + return parity & 1; > +} > + > +/* For each sample, ensure that the parity of all subbands of all channels > + * is 0 except once every 8 samples where the parity is forced to 1. */ > +static int aptx_check_parity(Channel channels[NB_CHANNELS], int32_t *idx) > +{ > + int32_t parity = aptx_quantized_parity(&channels[LEFT]) > + ^ aptx_quantized_parity(&channels[RIGHT]); > + > + int eighth = *idx == 7; > + *idx = (*idx + 1) & 7; > + > + return parity ^ eighth; > +} > + > +static void aptx_insert_sync(Channel channels[NB_CHANNELS], int32_t *idx) > +{ > + if (aptx_check_parity(channels, idx)) { > + int i; > + Channel *c; > + static const int map[] = { 1, 2, 0, 3 }; > + Quantize *min = &channels[NB_CHANNELS-1].quantize[map[0]]; > + for (c = &channels[NB_CHANNELS-1]; c >= channels; c--) > + for (i = 0; i < NB_SUBBANDS; i++) > + if (c->quantize[map[i]].error < min->error) > + min = &c->quantize[map[i]]; > + > + /* Forcing the desired parity is done by offsetting by 1 the > quantized > + * sample from the subband featuring the smallest quantization > error. */ > + min->quantized_sample = min->quantized_sample_parity_change; > + } > +} > + > +static uint16_t aptx_pack_codeword(Channel *channel) > +{ > + int32_t parity = aptx_quantized_parity(channel); > + return (((channel->quantize[3].quantized_sample & 0x06) | parity) << > 13) > + | (((channel->quantize[2].quantized_sample & 0x03) ) << > 11) > + | (((channel->quantize[1].quantized_sample & 0x0F) ) > << 7) > + | (((channel->quantize[0].quantized_sample & 0x7F) ) > << 0); > +} > + > +static void aptx_unpack_codeword(Channel *channel, uint16_t codeword) > +{ > + channel->quantize[0].quantized_sample = sign_extend(codeword >> 0, > 7); > + channel->quantize[1].quantized_sample = sign_extend(codeword >> 7, > 4); > + channel->quantize[2].quantized_sample = sign_extend(codeword >> 11, > 2); > + channel->quantize[3].quantized_sample = sign_extend(codeword >> 13, > 3); > + channel->quantize[3].quantized_sample = > (channel->quantize[3].quantized_sample > & ~1) > + | aptx_quantized_parity(channel) > ; > +} > + > +static void aptx_encode_samples(AptXContext *ctx, > + int32_t samples[NB_CHANNELS][4], > + uint8_t output[2*NB_CHANNELS]) > +{ > + int channel; > + for (channel = 0; channel < NB_CHANNELS; channel++) > + aptx_encode_channel(&ctx->channels[channel], samples[channel]); > + > + aptx_insert_sync(ctx->channels, &ctx->sync_idx); > + > + for (channel = 0; channel < NB_CHANNELS; channel++) { > + aptx_invert_quantize_and_prediction(&ctx->channels[channel]); > + AV_WB16(output + 2*channel, aptx_pack_codeword(&ctx-> > channels[channel])); > + } > +} > + > +static int aptx_decode_samples(AptXContext *ctx, > + const uint8_t input[2*NB_CHANNELS], > + int32_t samples[NB_CHANNELS][4]) > +{ > + int channel, ret; > + > + for (channel = 0; channel < NB_CHANNELS; channel++) { > + uint16_t codeword; > + aptx_generate_dither(&ctx->channels[channel]); > + > + codeword = AV_RB16(input + 2*channel); > + aptx_unpack_codeword(&ctx->channels[channel], codeword); > + aptx_invert_quantize_and_prediction(&ctx->channels[channel]); > + } > + > + ret = aptx_check_parity(ctx->channels, &ctx->sync_idx); > + > + for (channel = 0; channel < NB_CHANNELS; channel++) > + aptx_decode_channel(&ctx->channels[channel], samples[channel]); > + > + return ret; > +} > + > + > +static av_cold int aptx_init(AVCodecContext *avctx) > +{ > + AptXContext *s = avctx->priv_data; > + int chan, subband; > + > + if (avctx->frame_size == 0) > + avctx->frame_size = 1024; > + > + if (avctx->frame_size & 3) { > + av_log(avctx, AV_LOG_ERROR, "Frame size must be a multiple of 4 > samples\n"); > + return AVERROR(EINVAL); > + } > + > + for (chan = 0; chan < NB_CHANNELS; chan++) { > + Channel *channel = &s->channels[chan]; > + for (subband = 0; subband < NB_SUBBANDS; subband++) { > + Prediction *prediction = &channel->prediction[subband]; > + prediction->prev_sign[0] = 1; > + prediction->prev_sign[1] = 1; > + } > + } > + > + ff_af_queue_init(avctx, &s->afq); > + return 0; > +} > + > +static int aptx_decode_frame(AVCodecContext *avctx, void *data, > + int *got_frame_ptr, AVPacket *avpkt) > +{ > + AptXContext *s = avctx->priv_data; > + AVFrame *frame = data; > + int pos, channel, sample, ret; > + > + if (avpkt->size < 4) { > + av_log(avctx, AV_LOG_ERROR, "Packet is too small\n"); > + return AVERROR_INVALIDDATA; > + } > + > + /* get output buffer */ > + frame->channels = NB_CHANNELS; > + frame->format = AV_SAMPLE_FMT_S32P; > + frame->nb_samples = avpkt->size & ~3; > + if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) > + return ret; > + > + for (pos = 0; pos < frame->nb_samples; pos += 4) { > + int32_t samples[NB_CHANNELS][4]; > + > + if (aptx_decode_samples(s, &avpkt->data[pos], samples)) { > + av_log(avctx, AV_LOG_ERROR, "Synchronization error\n"); > + return AVERROR_INVALIDDATA; > + } > + > + for (channel = 0; channel < NB_CHANNELS; channel++) > + for (sample = 0; sample < 4; sample++) > + AV_WN32A(&frame->data[channel][4*(sample+pos)], > + samples[channel][sample] << 8); > + } > + > + *got_frame_ptr = 1; > + return frame->nb_samples; > +} > + > +static int aptx_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, > + const AVFrame *frame, int *got_packet_ptr) > +{ > + AptXContext *s = avctx->priv_data; > + int pos, channel, sample, ret; > + > + if ((ret = ff_af_queue_add(&s->afq, frame)) < 0) > + return ret; > + > + if ((ret = ff_alloc_packet2(avctx, avpkt, frame->nb_samples, 0)) < 0) > + return ret; > + > + for (pos = 0; pos < frame->nb_samples; pos += 4) { > + int32_t samples[NB_CHANNELS][4]; > + > + for (channel = 0; channel < NB_CHANNELS; channel++) > + for (sample = 0; sample < 4; sample++) > + samples[channel][sample] = > (int32_t)AV_RN32A(&frame->data[channel][4*(sample+pos)]) > >> 8; > + > + aptx_encode_samples(s, samples, avpkt->data + pos); > + } > + > + ff_af_queue_remove(&s->afq, frame->nb_samples, &avpkt->pts, > &avpkt->duration); > + *got_packet_ptr = 1; > + return 0; > +} > + > +static av_cold int aptx_close(AVCodecContext *avctx) > +{ > + AptXContext *s = avctx->priv_data; > + ff_af_queue_close(&s->afq); > + return 0; > +} > + > + > +#if CONFIG_APTX_DECODER > +AVCodec ff_aptx_decoder = { > + .name = "aptx", > + .long_name = NULL_IF_CONFIG_SMALL("aptX (Audio Processing > Technology for Bluetooth)"), > + .type = AVMEDIA_TYPE_AUDIO, > + .id = AV_CODEC_ID_APTX, > + .priv_data_size = sizeof(AptXContext), > + .init = aptx_init, > + .decode = aptx_decode_frame, > + .close = aptx_close, > + .capabilities = AV_CODEC_CAP_DR1, > + .channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0}, > + .sample_fmts = (const enum AVSampleFormat[]) { > AV_SAMPLE_FMT_S32P, > + > AV_SAMPLE_FMT_NONE }, > +}; > +#endif > + > +#if CONFIG_APTX_ENCODER > +AVCodec ff_aptx_encoder = { > + .name = "aptx", > + .long_name = NULL_IF_CONFIG_SMALL("aptX (Audio Processing > Technology for Bluetooth)"), > + .type = AVMEDIA_TYPE_AUDIO, > + .id = AV_CODEC_ID_APTX, > + .priv_data_size = sizeof(AptXContext), > + .init = aptx_init, > + .encode2 = aptx_encode_frame, > + .close = aptx_close, > + .channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0}, > + .sample_fmts = (const enum AVSampleFormat[]) { > AV_SAMPLE_FMT_S32P, > + > AV_SAMPLE_FMT_NONE }, > + .supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, > 44100, 48000, 0}, > +}; > +#endif > diff --git a/libavcodec/avcodec.h b/libavcodec/avcodec.h > index c4134424f0..429d62a60a 100644 > --- a/libavcodec/avcodec.h > +++ b/libavcodec/avcodec.h > @@ -632,6 +632,7 @@ enum AVCodecID { > AV_CODEC_ID_ATRAC3AL, > AV_CODEC_ID_ATRAC3PAL, > AV_CODEC_ID_DOLBY_E, > + AV_CODEC_ID_APTX, > > /* subtitle codecs */ > AV_CODEC_ID_FIRST_SUBTITLE = 0x17000, ///< A dummy ID > pointing at the start of subtitle codecs. > diff --git a/libavcodec/codec_desc.c b/libavcodec/codec_desc.c > index 92bf1d2681..c3688de1d6 100644 > --- a/libavcodec/codec_desc.c > +++ b/libavcodec/codec_desc.c > @@ -2859,6 +2859,13 @@ static const AVCodecDescriptor codec_descriptors[] > = { > .long_name = NULL_IF_CONFIG_SMALL("ADPCM MTAF"), > .props = AV_CODEC_PROP_LOSSY, > }, > + { > + .id = AV_CODEC_ID_APTX, > + .type = AVMEDIA_TYPE_AUDIO, > + .name = "aptx", > + .long_name = NULL_IF_CONFIG_SMALL("aptX (Audio Processing > Technology for Bluetooth)"), > + .props = AV_CODEC_PROP_LOSSY, > + }, > > /* subtitle codecs */ > { > -- > 2.15.0 > > _______________________________________________ > ffmpeg-devel mailing list > ffmpeg-devel@ffmpeg.org > http://ffmpeg.org/mailman/listinfo/ffmpeg-devel > Pushed, thanks alot _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org http://ffmpeg.org/mailman/listinfo/ffmpeg-devel