This commit rearranges the code in Native Backend to use the TaskItem for inference.
Signed-off-by: Shubhanshu Saxena <shubhanshu....@gmail.com> --- libavfilter/dnn/dnn_backend_native.c | 176 ++++++++++++++++++--------- libavfilter/dnn/dnn_backend_native.h | 2 + 2 files changed, 121 insertions(+), 57 deletions(-) diff --git a/libavfilter/dnn/dnn_backend_native.c b/libavfilter/dnn/dnn_backend_native.c index a6be27f1fd..3b2a3aa55d 100644 --- a/libavfilter/dnn/dnn_backend_native.c +++ b/libavfilter/dnn/dnn_backend_native.c @@ -45,9 +45,29 @@ static const AVClass dnn_native_class = { .category = AV_CLASS_CATEGORY_FILTER, }; -static DNNReturnType execute_model_native(const DNNModel *model, const char *input_name, AVFrame *in_frame, - const char **output_names, uint32_t nb_output, AVFrame *out_frame, - int do_ioproc); +static DNNReturnType execute_model_native(Queue *inference_queue); + +static DNNReturnType extract_inference_from_task(TaskItem *task, Queue *inference_queue) +{ + NativeModel *native_model = task->model; + NativeContext *ctx = &native_model->ctx; + InferenceItem *inference = av_malloc(sizeof(*inference)); + + if (!inference) { + av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for InferenceItem\n"); + return DNN_ERROR; + } + task->inference_todo = 1; + task->inference_done = 0; + inference->task = task; + + if (ff_queue_push_back(inference_queue, inference) < 0) { + av_log(ctx, AV_LOG_ERROR, "Failed to push back inference_queue.\n"); + av_freep(&inference); + return DNN_ERROR; + } + return DNN_SUCCESS; +} static DNNReturnType get_input_native(void *model, DNNData *input, const char *input_name) { @@ -78,34 +98,36 @@ static DNNReturnType get_input_native(void *model, DNNData *input, const char *i static DNNReturnType get_output_native(void *model, const char *input_name, int input_width, int input_height, const char *output_name, int *output_width, int *output_height) { - DNNReturnType ret; + DNNReturnType ret = 0; NativeModel *native_model = model; NativeContext *ctx = &native_model->ctx; - AVFrame *in_frame = av_frame_alloc(); - AVFrame *out_frame = NULL; - - if (!in_frame) { - av_log(ctx, AV_LOG_ERROR, "Could not allocate memory for input frame\n"); - return DNN_ERROR; + TaskItem task; + DNNExecBaseParams exec_params = { + .input_name = input_name, + .output_names = &output_name, + .nb_output = 1, + .in_frame = NULL, + .out_frame = NULL, + }; + + if (ff_dnn_fill_gettingoutput_task(&task, &exec_params, native_model, input_height, input_width, ctx) != DNN_SUCCESS) { + ret = DNN_ERROR; + goto err; } - out_frame = av_frame_alloc(); - - if (!out_frame) { - av_log(ctx, AV_LOG_ERROR, "Could not allocate memory for output frame\n"); - av_frame_free(&in_frame); - return DNN_ERROR; + if (extract_inference_from_task(&task, native_model->inference_queue) != DNN_SUCCESS) { + av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n"); + ret = DNN_ERROR; + goto err; } - in_frame->width = input_width; - in_frame->height = input_height; - - ret = execute_model_native(native_model->model, input_name, in_frame, &output_name, 1, out_frame, 0); - *output_width = out_frame->width; - *output_height = out_frame->height; + ret = execute_model_native(native_model->inference_queue); + *output_width = task.out_frame->width; + *output_height = task.out_frame->height; - av_frame_free(&out_frame); - av_frame_free(&in_frame); +err: + av_frame_free(&task.out_frame); + av_frame_free(&task.in_frame); return ret; } @@ -190,6 +212,11 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType f goto fail; } + native_model->inference_queue = ff_queue_create(); + if (!native_model->inference_queue) { + goto fail; + } + for (layer = 0; layer < native_model->layers_num; ++layer){ layer_type = (int32_t)avio_rl32(model_file_context); dnn_size += 4; @@ -259,50 +286,66 @@ fail: return NULL; } -static DNNReturnType execute_model_native(const DNNModel *model, const char *input_name, AVFrame *in_frame, - const char **output_names, uint32_t nb_output, AVFrame *out_frame, - int do_ioproc) +static DNNReturnType execute_model_native(Queue *inference_queue) { - NativeModel *native_model = model->model; - NativeContext *ctx = &native_model->ctx; + NativeModel *native_model = NULL; + NativeContext *ctx = NULL; int32_t layer; DNNData input, output; DnnOperand *oprd = NULL; + InferenceItem *inference = NULL; + TaskItem *task = NULL; + DNNReturnType ret = 0; + + inference = ff_queue_pop_front(inference_queue); + if (!inference) { + av_log(NULL, AV_LOG_ERROR, "Failed to get inference item\n"); + ret = DNN_ERROR; + goto err; + } + task = inference->task; + native_model = task->model; + ctx = &native_model->ctx; if (native_model->layers_num <= 0 || native_model->operands_num <= 0) { av_log(ctx, AV_LOG_ERROR, "No operands or layers in model\n"); - return DNN_ERROR; + ret = DNN_ERROR; + goto err; } for (int i = 0; i < native_model->operands_num; ++i) { oprd = &native_model->operands[i]; - if (strcmp(oprd->name, input_name) == 0) { + if (strcmp(oprd->name, task->input_name) == 0) { if (oprd->type != DOT_INPUT) { - av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", input_name); - return DNN_ERROR; + av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", task->input_name); + ret = DNN_ERROR; + goto err; } break; } oprd = NULL; } if (!oprd) { - av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name); - return DNN_ERROR; + av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name); + ret = DNN_ERROR; + goto err; } - oprd->dims[1] = in_frame->height; - oprd->dims[2] = in_frame->width; + oprd->dims[1] = task->in_frame->height; + oprd->dims[2] = task->in_frame->width; av_freep(&oprd->data); oprd->length = ff_calculate_operand_data_length(oprd); if (oprd->length <= 0) { av_log(ctx, AV_LOG_ERROR, "The input data length overflow\n"); - return DNN_ERROR; + ret = DNN_ERROR; + goto err; } oprd->data = av_malloc(oprd->length); if (!oprd->data) { av_log(ctx, AV_LOG_ERROR, "Failed to malloc memory for input data\n"); - return DNN_ERROR; + ret = DNN_ERROR; + goto err; } input.height = oprd->dims[1]; @@ -310,19 +353,20 @@ static DNNReturnType execute_model_native(const DNNModel *model, const char *inp input.channels = oprd->dims[3]; input.data = oprd->data; input.dt = oprd->data_type; - if (do_ioproc) { + if (task->do_ioproc) { if (native_model->model->frame_pre_proc != NULL) { - native_model->model->frame_pre_proc(in_frame, &input, native_model->model->filter_ctx); + native_model->model->frame_pre_proc(task->in_frame, &input, native_model->model->filter_ctx); } else { - ff_proc_from_frame_to_dnn(in_frame, &input, ctx); + ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx); } } - if (nb_output != 1) { + if (task->nb_output != 1) { // currently, the filter does not need multiple outputs, // so we just pending the support until we really need it. avpriv_report_missing_feature(ctx, "multiple outputs"); - return DNN_ERROR; + ret = DNN_ERROR; + goto err; } for (layer = 0; layer < native_model->layers_num; ++layer){ @@ -333,13 +377,14 @@ static DNNReturnType execute_model_native(const DNNModel *model, const char *inp native_model->layers[layer].params, &native_model->ctx) == DNN_ERROR) { av_log(ctx, AV_LOG_ERROR, "Failed to execute model\n"); - return DNN_ERROR; + ret = DNN_ERROR; + goto err; } } - for (uint32_t i = 0; i < nb_output; ++i) { + for (uint32_t i = 0; i < task->nb_output; ++i) { DnnOperand *oprd = NULL; - const char *output_name = output_names[i]; + const char *output_name = task->output_names[i]; for (int j = 0; j < native_model->operands_num; ++j) { if (strcmp(native_model->operands[j].name, output_name) == 0) { oprd = &native_model->operands[j]; @@ -349,7 +394,8 @@ static DNNReturnType execute_model_native(const DNNModel *model, const char *inp if (oprd == NULL) { av_log(ctx, AV_LOG_ERROR, "Could not find output in model\n"); - return DNN_ERROR; + ret = DNN_ERROR; + goto err; } output.data = oprd->data; @@ -358,32 +404,43 @@ static DNNReturnType execute_model_native(const DNNModel *model, const char *inp output.channels = oprd->dims[3]; output.dt = oprd->data_type; - if (do_ioproc) { + if (task->do_ioproc) { if (native_model->model->frame_post_proc != NULL) { - native_model->model->frame_post_proc(out_frame, &output, native_model->model->filter_ctx); + native_model->model->frame_post_proc(task->out_frame, &output, native_model->model->filter_ctx); } else { - ff_proc_from_dnn_to_frame(out_frame, &output, ctx); + ff_proc_from_dnn_to_frame(task->out_frame, &output, ctx); } } else { - out_frame->width = output.width; - out_frame->height = output.height; + task->out_frame->width = output.width; + task->out_frame->height = output.height; } } - - return DNN_SUCCESS; + task->inference_done++; +err: + av_freep(&inference); + return ret; } DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_params) { NativeModel *native_model = model->model; NativeContext *ctx = &native_model->ctx; + TaskItem task; if (ff_check_exec_params(ctx, DNN_NATIVE, model->func_type, exec_params) != 0) { return DNN_ERROR; } - return execute_model_native(model, exec_params->input_name, exec_params->in_frame, - exec_params->output_names, exec_params->nb_output, exec_params->out_frame, 1); + if (ff_dnn_fill_task(&task, exec_params, native_model, 0, 1) != DNN_SUCCESS) { + return DNN_ERROR; + } + + if (extract_inference_from_task(&task, native_model->inference_queue) != DNN_SUCCESS) { + av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n"); + return DNN_ERROR; + } + + return execute_model_native(native_model->inference_queue); } int32_t ff_calculate_operand_dims_count(const DnnOperand *oprd) @@ -435,6 +492,11 @@ void ff_dnn_free_model_native(DNNModel **model) av_freep(&native_model->operands); } + while (ff_queue_size(native_model->inference_queue) != 0) { + InferenceItem *item = ff_queue_pop_front(native_model->inference_queue); + av_freep(&item); + } + ff_queue_destroy(native_model->inference_queue); av_freep(&native_model); } av_freep(model); diff --git a/libavfilter/dnn/dnn_backend_native.h b/libavfilter/dnn/dnn_backend_native.h index 89bcb8e358..1b9d5bdf2d 100644 --- a/libavfilter/dnn/dnn_backend_native.h +++ b/libavfilter/dnn/dnn_backend_native.h @@ -30,6 +30,7 @@ #include "../dnn_interface.h" #include "libavformat/avio.h" #include "libavutil/opt.h" +#include "queue.h" /** * the enum value of DNNLayerType should not be changed, @@ -126,6 +127,7 @@ typedef struct NativeModel{ int32_t layers_num; DnnOperand *operands; int32_t operands_num; + Queue *inference_queue; } NativeModel; DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx); -- 2.25.1 _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel To unsubscribe, visit link above, or email ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".