> -----Original Message-----
> From: ffmpeg-devel <ffmpeg-devel-boun...@ffmpeg.org> On Behalf Of Pedro
> Arthur
> Sent: 2020年6月28日 23:29
> To: FFmpeg development discussions and patches <ffmpeg-devel@ffmpeg.org>
> Subject: Re: [FFmpeg-devel] [PATCH V2 2/2] vf_dnn_processing.c: add dnn
> backend openvino
> 
> Hi,
> 
> Em qua., 24 de jun. de 2020 às 03:40, Guo, Yejun <yejun....@intel.com>
> escreveu:
> 
> >
> >
> > > -----Original Message-----
> > > From: Guo, Yejun <yejun....@intel.com>
> > > Sent: 2020年6月11日 21:01
> > > To: ffmpeg-devel@ffmpeg.org
> > > Cc: Guo, Yejun <yejun....@intel.com>
> > > Subject: [PATCH V2 2/2] vf_dnn_processing.c: add dnn backend
> > > openvino
> > >
> > > We can try with the srcnn model from sr filter.
> > > 1) get srcnn.pb model file, see filter sr
> > > 2) convert srcnn.pb into openvino model with command:
> > > python mo_tf.py --input_model srcnn.pb --data_type=FP32
> > > --input_shape [1,960,1440,1] --keep_shape_ops
> > >
> > > See the script at
> > > https://github.com/openvinotoolkit/openvino/tree/master/model-optimi
> > > zer We'll see srcnn.xml and srcnn.bin at current path, copy them to
> > > the
> > directory
> > > where ffmpeg is.
> > >
> > > I have also uploaded the model files at
> > > https://github.com/guoyejun/dnn_processing/tree/master/models
> > >
> > > 3) run with openvino backend:
> > > ffmpeg -i input.jpg -vf
> > >
> format=yuv420p,scale=w=iw*2:h=ih*2,dnn_processing=dnn_backend=openvi
> > > no :model=srcnn.xml:input=x:output=srcnn/Maximum -y srcnn.ov.jpg
> > > (The input.jpg resolution is 720*480)
> > >
> > > Signed-off-by: Guo, Yejun <yejun....@intel.com>
> > > ---
> > >  doc/filters.texi                | 10 +++++++++-
> > >  libavfilter/vf_dnn_processing.c |  5 ++++-
> > >  2 files changed, 13 insertions(+), 2 deletions(-)
> >
> > any comment for this patch set? thanks.
> >
> It would be nice if you include some benchmark numbers, comparing it with the
> others backends.
> Rest LGTM, thanks!

Thanks Pedro, I tried srcnn model on a half-minute video to check the 
performance of tesorflow
backend (libtensorflow-cpu-linux-x86_64-1.14.0.tar.gz) and openvino backend 
with cpu path. 
The openvino backend does not cost more time. Actually, current openvino patch 
did not
enable throughput mode which increases performance a lot, see more detail at 
https://docs.openvinotoolkit.org/latest/_docs_optimization_guide_dldt_optimization_guide.html#cpu-streams

I plan to enable the features for performance next, for example, use filter's 
activate interface,
enable batch frames for one inference (they are common for different backends) 
and also
the throughput mode (in openvino backend), etc.

will push the patch tomorrow if no other comments, thanks.

_______________________________________________
ffmpeg-devel mailing list
ffmpeg-devel@ffmpeg.org
https://ffmpeg.org/mailman/listinfo/ffmpeg-devel

To unsubscribe, visit link above, or email
ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".

Reply via email to