ffmpeg | branch: master | Alexandra Khirnova <alexandra.khirn...@gmail.com> | 
Fri Oct  2 17:53:26 2015 +0200| [58b42345b38b46d11c32e11d9c57517f99d6a601] | 
committer: Luca Barbato

dcadec: reorganise context data

place primary audio coding header data into DCAAudioHeader
structure to make DCAContext clearer
and move channel related data to DCAChan structure to make
them easier to use by extensions

Signed-off-by: Luca Barbato <lu_z...@gentoo.org>

> http://git.videolan.org/gitweb.cgi/ffmpeg.git/?a=commit;h=58b42345b38b46d11c32e11d9c57517f99d6a601
---

 libavcodec/dca.h    |   70 ++++++++-----
 libavcodec/dcadec.c |  276 ++++++++++++++++++++++++++-------------------------
 2 files changed, 187 insertions(+), 159 deletions(-)

diff --git a/libavcodec/dca.h b/libavcodec/dca.h
index 887eb37..6548d75 100644
--- a/libavcodec/dca.h
+++ b/libavcodec/dca.h
@@ -130,6 +130,47 @@ typedef struct QMF64_table {
     float rsin[32];
 } QMF64_table;
 
+/* Primary audio coding header */
+typedef struct DCAAudioHeader {
+    int subband_activity[DCA_PRIM_CHANNELS_MAX];    ///< subband activity count
+    int vq_start_subband[DCA_PRIM_CHANNELS_MAX];    ///< high frequency vq 
start subband
+    int joint_intensity[DCA_PRIM_CHANNELS_MAX];     ///< joint intensity 
coding index
+    int transient_huffman[DCA_PRIM_CHANNELS_MAX];   ///< transient mode code 
book
+    int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
+    int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX];    ///< bit allocation 
quantizer select
+    int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< 
quantization index codebook select
+    float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX];   ///< scale 
factor adjustment
+
+    int subframes;              ///< number of subframes
+    int total_channels;         ///< number of channels including extensions
+    int prim_channels;          ///< number of primary audio channels
+} DCAAudioHeader;
+
+typedef struct DCAChan {
+    DECLARE_ALIGNED(32, float, 
subband_samples)[DCA_BLOCKS_MAX][DCA_SUBBANDS][8];
+
+    /* Subband samples history (for ADPCM) */
+    DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_SUBBANDS][4];
+    int hist_index;
+
+    /* Half size is sufficient for core decoding, but for 96 kHz data
+     * we need QMF with 64 subbands and 1024 samples. */
+    DECLARE_ALIGNED(32, float, subband_fir_hist)[1024];
+    DECLARE_ALIGNED(32, float, subband_fir_noidea)[64];
+
+    /* Primary audio coding side information */
+    int prediction_mode[DCA_SUBBANDS];    ///< prediction mode (ADPCM used or 
not)
+    int prediction_vq[DCA_SUBBANDS];      ///< prediction VQ coefs
+    int bitalloc[DCA_SUBBANDS];           ///< bit allocation index
+    int transition_mode[DCA_SUBBANDS];    ///< transition mode (transients)
+    int32_t scale_factor[DCA_SUBBANDS][2];///< scale factors (2 if transient)
+    int joint_huff;                       ///< joint subband scale factors 
codebook
+    int joint_scale_factor[DCA_SUBBANDS]; ///< joint subband scale factors
+
+    int32_t  high_freq_vq[DCA_SUBBANDS];  ///< VQ encoded high frequency 
subbands
+} DCAChan;
+
+
 typedef struct DCAContext {
     AVClass *class;             ///< class for AVOptions
     AVCodecContext *avctx;
@@ -163,28 +204,11 @@ typedef struct DCAContext {
     int dialog_norm;            ///< dialog normalisation parameter
 
     /* Primary audio coding header */
-    int subframes;              ///< number of subframes
-    int total_channels;         ///< number of channels including extensions
-    int prim_channels;          ///< number of primary audio channels
-    int subband_activity[DCA_PRIM_CHANNELS_MAX];    ///< subband activity count
-    int vq_start_subband[DCA_PRIM_CHANNELS_MAX];    ///< high frequency vq 
start subband
-    int joint_intensity[DCA_PRIM_CHANNELS_MAX];     ///< joint intensity 
coding index
-    int transient_huffman[DCA_PRIM_CHANNELS_MAX];   ///< transient mode code 
book
-    int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
-    int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX];    ///< bit allocation 
quantizer select
-    int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< 
quantization index codebook select
-    float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX];   ///< scale 
factor adjustment
+    DCAAudioHeader audio_header;
 
     /* Primary audio coding side information */
     int subsubframes[DCA_SUBFRAMES_MAX];                         ///< number 
of subsubframes
     int partial_samples[DCA_SUBFRAMES_MAX];                      ///< partial 
subsubframe samples count
-    int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];    ///< 
prediction mode (ADPCM used or not)
-    int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];      ///< 
prediction VQ coefs
-    int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];           ///< bit 
allocation index
-    int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];    ///< 
transition mode (transients)
-    int32_t scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2];///< scale 
factors (2 if transient)
-    int joint_huff[DCA_PRIM_CHANNELS_MAX];                       ///< joint 
subband scale factors codebook
-    int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint 
subband scale factors
     float downmix_coef[DCA_PRIM_CHANNELS_MAX + 1][2];            ///< stereo 
downmix coefficients
     int dynrange_coef;                                           ///< dynamic 
range coefficient
 
@@ -195,23 +219,17 @@ typedef struct DCAContext {
     uint8_t  core_downmix_amode;                                 ///< audio 
channel arrangement of embedded downmix
     uint16_t core_downmix_codes[DCA_PRIM_CHANNELS_MAX + 1][4];   ///< embedded 
downmix coefficients (9-bit codes)
 
-    int32_t  high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];  ///< VQ 
encoded high frequency subbands
 
     float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)];      ///< Low 
frequency effect data
     int lfe_scale_factor;
 
     /* Subband samples history (for ADPCM) */
-    DECLARE_ALIGNED(16, float, 
subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
-    /* Half size is sufficient for core decoding, but for 96 kHz data
-     * we need QMF with 64 subbands and 1024 samples. */
-    DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][1024];
-    DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][64];
-    int hist_index[DCA_PRIM_CHANNELS_MAX];
     DECLARE_ALIGNED(32, float, raXin)[32];
 
+    DCAChan dca_chan[DCA_PRIM_CHANNELS_MAX];
+
     int output;                 ///< type of output
 
-    DECLARE_ALIGNED(32, float, 
subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
     float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
     float *extra_channels[DCA_PRIM_CHANNELS_MAX + 1];
     uint8_t *extra_channels_buffer;
diff --git a/libavcodec/dcadec.c b/libavcodec/dcadec.c
index 3365828..610857d 100644
--- a/libavcodec/dcadec.c
+++ b/libavcodec/dcadec.c
@@ -229,43 +229,47 @@ static int dca_parse_audio_coding_header(DCAContext *s, 
int base_channel)
     static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
     static const int thr[11]    = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
 
-    s->total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
-    s->prim_channels  = s->total_channels;
+    s->audio_header.total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
+    s->audio_header.prim_channels  = s->audio_header.total_channels;
 
-    if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
-        s->prim_channels = DCA_PRIM_CHANNELS_MAX;
+    if (s->audio_header.prim_channels > DCA_PRIM_CHANNELS_MAX)
+        s->audio_header.prim_channels = DCA_PRIM_CHANNELS_MAX;
 
-    for (i = base_channel; i < s->prim_channels; i++) {
-        s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
-        if (s->subband_activity[i] > DCA_SUBBANDS)
-            s->subband_activity[i] = DCA_SUBBANDS;
+    for (i = base_channel; i < s->audio_header.prim_channels; i++) {
+        s->audio_header.subband_activity[i] = get_bits(&s->gb, 5) + 2;
+        if (s->audio_header.subband_activity[i] > DCA_SUBBANDS)
+            s->audio_header.subband_activity[i] = DCA_SUBBANDS;
     }
-    for (i = base_channel; i < s->prim_channels; i++) {
-        s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
-        if (s->vq_start_subband[i] > DCA_SUBBANDS)
-            s->vq_start_subband[i] = DCA_SUBBANDS;
+    for (i = base_channel; i < s->audio_header.prim_channels; i++) {
+        s->audio_header.vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
+        if (s->audio_header.vq_start_subband[i] > DCA_SUBBANDS)
+            s->audio_header.vq_start_subband[i] = DCA_SUBBANDS;
     }
-    get_array(&s->gb, s->joint_intensity + base_channel,     s->prim_channels 
- base_channel, 3);
-    get_array(&s->gb, s->transient_huffman + base_channel,   s->prim_channels 
- base_channel, 2);
-    get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels 
- base_channel, 3);
-    get_array(&s->gb, s->bitalloc_huffman + base_channel,    s->prim_channels 
- base_channel, 3);
+    get_array(&s->gb, s->audio_header.joint_intensity + base_channel,
+              s->audio_header.prim_channels - base_channel, 3);
+    get_array(&s->gb, s->audio_header.transient_huffman + base_channel,
+              s->audio_header.prim_channels - base_channel, 2);
+    get_array(&s->gb, s->audio_header.scalefactor_huffman + base_channel,
+              s->audio_header.prim_channels - base_channel, 3);
+    get_array(&s->gb, s->audio_header.bitalloc_huffman + base_channel,
+              s->audio_header.prim_channels - base_channel, 3);
 
     /* Get codebooks quantization indexes */
     if (!base_channel)
-        memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
+        memset(s->audio_header.quant_index_huffman, 0, 
sizeof(s->audio_header.quant_index_huffman));
     for (j = 1; j < 11; j++)
-        for (i = base_channel; i < s->prim_channels; i++)
-            s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
+        for (i = base_channel; i < s->audio_header.prim_channels; i++)
+            s->audio_header.quant_index_huffman[i][j] = get_bits(&s->gb, 
bitlen[j]);
 
     /* Get scale factor adjustment */
     for (j = 0; j < 11; j++)
-        for (i = base_channel; i < s->prim_channels; i++)
-            s->scalefactor_adj[i][j] = 1;
+        for (i = base_channel; i < s->audio_header.prim_channels; i++)
+            s->audio_header.scalefactor_adj[i][j] = 1;
 
     for (j = 1; j < 11; j++)
-        for (i = base_channel; i < s->prim_channels; i++)
-            if (s->quant_index_huffman[i][j] < thr[j])
-                s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
+        for (i = base_channel; i < s->audio_header.prim_channels; i++)
+            if (s->audio_header.quant_index_huffman[i][j] < thr[j])
+                s->audio_header.scalefactor_adj[i][j] = 
adj_table[get_bits(&s->gb, 2)];
 
     if (s->crc_present) {
         /* Audio header CRC check */
@@ -336,7 +340,7 @@ static int dca_parse_frame_header(DCAContext *s)
         s->output |= DCA_LFE;
 
     /* Primary audio coding header */
-    s->subframes = get_bits(&s->gb, 4) + 1;
+    s->audio_header.subframes = get_bits(&s->gb, 4) + 1;
 
     return dca_parse_audio_coding_header(s, 0);
 }
@@ -371,53 +375,53 @@ static int dca_subframe_header(DCAContext *s, int 
base_channel, int block_index)
         s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
     }
 
-    for (j = base_channel; j < s->prim_channels; j++) {
-        for (k = 0; k < s->subband_activity[j]; k++)
-            s->prediction_mode[j][k] = get_bits(&s->gb, 1);
+    for (j = base_channel; j < s->audio_header.prim_channels; j++) {
+        for (k = 0; k < s->audio_header.subband_activity[j]; k++)
+            s->dca_chan[j].prediction_mode[k] = get_bits(&s->gb, 1);
     }
 
     /* Get prediction codebook */
-    for (j = base_channel; j < s->prim_channels; j++) {
-        for (k = 0; k < s->subband_activity[j]; k++) {
-            if (s->prediction_mode[j][k] > 0) {
+    for (j = base_channel; j < s->audio_header.prim_channels; j++) {
+        for (k = 0; k < s->audio_header.subband_activity[j]; k++) {
+            if (s->dca_chan[j].prediction_mode[k] > 0) {
                 /* (Prediction coefficient VQ address) */
-                s->prediction_vq[j][k] = get_bits(&s->gb, 12);
+                s->dca_chan[j].prediction_vq[k] = get_bits(&s->gb, 12);
             }
         }
     }
 
     /* Bit allocation index */
-    for (j = base_channel; j < s->prim_channels; j++) {
-        for (k = 0; k < s->vq_start_subband[j]; k++) {
-            if (s->bitalloc_huffman[j] == 6)
-                s->bitalloc[j][k] = get_bits(&s->gb, 5);
-            else if (s->bitalloc_huffman[j] == 5)
-                s->bitalloc[j][k] = get_bits(&s->gb, 4);
-            else if (s->bitalloc_huffman[j] == 7) {
+    for (j = base_channel; j < s->audio_header.prim_channels; j++) {
+        for (k = 0; k < s->audio_header.vq_start_subband[j]; k++) {
+            if (s->audio_header.bitalloc_huffman[j] == 6)
+                s->dca_chan[j].bitalloc[k] = get_bits(&s->gb, 5);
+            else if (s->audio_header.bitalloc_huffman[j] == 5)
+                s->dca_chan[j].bitalloc[k] = get_bits(&s->gb, 4);
+            else if (s->audio_header.bitalloc_huffman[j] == 7) {
                 av_log(s->avctx, AV_LOG_ERROR,
                        "Invalid bit allocation index\n");
                 return AVERROR_INVALIDDATA;
             } else {
-                s->bitalloc[j][k] =
-                    get_bitalloc(&s->gb, &dca_bitalloc_index, 
s->bitalloc_huffman[j]);
+                s->dca_chan[j].bitalloc[k] =
+                    get_bitalloc(&s->gb, &dca_bitalloc_index, 
s->audio_header.bitalloc_huffman[j]);
             }
 
-            if (s->bitalloc[j][k] > 26) {
+            if (s->dca_chan[j].bitalloc[k] > 26) {
                 ff_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
-                        j, k, s->bitalloc[j][k]);
+                        j, k, s->dca_chan[j].bitalloc[k]);
                 return AVERROR_INVALIDDATA;
             }
         }
     }
 
     /* Transition mode */
-    for (j = base_channel; j < s->prim_channels; j++) {
-        for (k = 0; k < s->subband_activity[j]; k++) {
-            s->transition_mode[j][k] = 0;
+    for (j = base_channel; j < s->audio_header.prim_channels; j++) {
+        for (k = 0; k < s->audio_header.subband_activity[j]; k++) {
+            s->dca_chan[j].transition_mode[k] = 0;
             if (s->subsubframes[s->current_subframe] > 1 &&
-                k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
-                s->transition_mode[j][k] =
-                    get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
+                k < s->audio_header.vq_start_subband[j] && 
s->dca_chan[j].bitalloc[k] > 0) {
+                s->dca_chan[j].transition_mode[k] =
+                    get_bitalloc(&s->gb, &dca_tmode, 
s->audio_header.transient_huffman[j]);
             }
         }
     }
@@ -425,14 +429,14 @@ static int dca_subframe_header(DCAContext *s, int 
base_channel, int block_index)
     if (get_bits_left(&s->gb) < 0)
         return AVERROR_INVALIDDATA;
 
-    for (j = base_channel; j < s->prim_channels; j++) {
+    for (j = base_channel; j < s->audio_header.prim_channels; j++) {
         const uint32_t *scale_table;
         int scale_sum, log_size;
 
-        memset(s->scale_factor[j], 0,
-               s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
+        memset(s->dca_chan[j].scale_factor, 0,
+               s->audio_header.subband_activity[j] * 
sizeof(s->dca_chan[j].scale_factor[0][0]) * 2);
 
-        if (s->scalefactor_huffman[j] == 6) {
+        if (s->audio_header.scalefactor_huffman[j] == 6) {
             scale_table = ff_dca_scale_factor_quant7;
             log_size    = 7;
         } else {
@@ -443,45 +447,46 @@ static int dca_subframe_header(DCAContext *s, int 
base_channel, int block_index)
         /* When huffman coded, only the difference is encoded */
         scale_sum = 0;
 
-        for (k = 0; k < s->subband_activity[j]; k++) {
-            if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
-                scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], 
scale_sum, log_size);
-                s->scale_factor[j][k][0] = scale_table[scale_sum];
+        for (k = 0; k < s->audio_header.subband_activity[j]; k++) {
+            if (k >= s->audio_header.vq_start_subband[j] || 
s->dca_chan[j].bitalloc[k] > 0) {
+                scale_sum = get_scale(&s->gb, 
s->audio_header.scalefactor_huffman[j], scale_sum, log_size);
+                s->dca_chan[j].scale_factor[k][0] = scale_table[scale_sum];
             }
 
-            if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
+            if (k < s->audio_header.vq_start_subband[j] && 
s->dca_chan[j].transition_mode[k]) {
                 /* Get second scale factor */
-                scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], 
scale_sum, log_size);
-                s->scale_factor[j][k][1] = scale_table[scale_sum];
+                scale_sum = get_scale(&s->gb, 
s->audio_header.scalefactor_huffman[j], scale_sum, log_size);
+                s->dca_chan[j].scale_factor[k][1] = scale_table[scale_sum];
             }
         }
     }
 
     /* Joint subband scale factor codebook select */
-    for (j = base_channel; j < s->prim_channels; j++) {
+    for (j = base_channel; j < s->audio_header.prim_channels; j++) {
         /* Transmitted only if joint subband coding enabled */
-        if (s->joint_intensity[j] > 0)
-            s->joint_huff[j] = get_bits(&s->gb, 3);
+        if (s->audio_header.joint_intensity[j] > 0)
+            s->dca_chan[j].joint_huff = get_bits(&s->gb, 3);
     }
 
     if (get_bits_left(&s->gb) < 0)
         return AVERROR_INVALIDDATA;
 
     /* Scale factors for joint subband coding */
-    for (j = base_channel; j < s->prim_channels; j++) {
+    for (j = base_channel; j < s->audio_header.prim_channels; j++) {
         int source_channel;
 
         /* Transmitted only if joint subband coding enabled */
-        if (s->joint_intensity[j] > 0) {
+        if (s->audio_header.joint_intensity[j] > 0) {
             int scale = 0;
-            source_channel = s->joint_intensity[j] - 1;
+            source_channel = s->audio_header.joint_intensity[j] - 1;
 
             /* When huffman coded, only the difference is encoded
              * (is this valid as well for joint scales ???) */
 
-            for (k = s->subband_activity[j]; k < 
s->subband_activity[source_channel]; k++) {
-                scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
-                s->joint_scale_factor[j][k] = scale;    
/*joint_scale_table[scale]; */
+            for (k = s->audio_header.subband_activity[j];
+                 k < s->audio_header.subband_activity[source_channel]; k++) {
+                scale = get_scale(&s->gb, s->dca_chan[j].joint_huff, 64 /* 
bias */, 7);
+                s->dca_chan[j].joint_scale_factor[k] = scale;    
/*joint_scale_table[scale]; */
             }
 
             if (!(s->debug_flag & 0x02)) {
@@ -506,10 +511,10 @@ static int dca_subframe_header(DCAContext *s, int 
base_channel, int block_index)
      */
 
     /* VQ encoded high frequency subbands */
-    for (j = base_channel; j < s->prim_channels; j++)
-        for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
+    for (j = base_channel; j < s->audio_header.prim_channels; j++)
+        for (k = s->audio_header.vq_start_subband[j]; k < 
s->audio_header.subband_activity[j]; k++)
             /* 1 vector -> 32 samples */
-            s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
+            s->dca_chan[j].high_freq_vq[k] = get_bits(&s->gb, 10);
 
     /* Low frequency effect data */
     if (!base_channel && s->lfe) {
@@ -543,7 +548,7 @@ static void qmf_32_subbands(DCAContext *s, int chans,
 {
     const float *prCoeff;
 
-    int sb_act = s->subband_activity[chans];
+    int sb_act = s->audio_header.subband_activity[chans];
 
     scale *= sqrt(1 / 8.0);
 
@@ -554,9 +559,9 @@ static void qmf_32_subbands(DCAContext *s, int chans,
         prCoeff = ff_dca_fir_32bands_perfect;
 
     s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
-                              s->subband_fir_hist[chans],
-                              &s->hist_index[chans],
-                              s->subband_fir_noidea[chans], prCoeff,
+                              s->dca_chan[chans].subband_fir_hist,
+                              &s->dca_chan[chans].hist_index,
+                              s->dca_chan[chans].subband_fir_noidea, prCoeff,
                               samples_out, s->raXin, scale);
 }
 
@@ -591,14 +596,14 @@ static void qmf_64_subbands(DCAContext *s, int chans, 
float samples_in[64][SAMPL
 {
     float raXin[64];
     float A[32], B[32];
-    float *raX = s->subband_fir_hist[chans];
-    float *raZ = s->subband_fir_noidea[chans];
+    float *raX = s->dca_chan[chans].subband_fir_hist;
+    float *raZ = s->dca_chan[chans].subband_fir_noidea;
     unsigned i, j, k, subindex;
 
-    for (i = s->subband_activity[chans]; i < 64; i++)
+    for (i = s->audio_header.subband_activity[chans]; i < 64; i++)
         raXin[i] = 0.0;
     for (subindex = 0; subindex < SAMPLES_PER_SUBBAND; subindex++) {
-        for (i = 0; i < s->subband_activity[chans]; i++)
+        for (i = 0; i < s->audio_header.subband_activity[chans]; i++)
             raXin[i] = samples_in[i][subindex];
 
         for (k = 0; k < 32; k++) {
@@ -787,8 +792,6 @@ static int dca_subsubframe(DCAContext *s, int base_channel, 
int block_index)
 
     const float *quant_step_table;
 
-    /* FIXME */
-    float (*subband_samples)[DCA_SUBBANDS][SAMPLES_PER_SUBBAND] = 
s->subband_samples[block_index];
     LOCAL_ALIGNED_16(int32_t, block, [SAMPLES_PER_SUBBAND * DCA_SUBBANDS]);
 
     /*
@@ -801,17 +804,18 @@ static int dca_subsubframe(DCAContext *s, int 
base_channel, int block_index)
     else
         quant_step_table = ff_dca_lossy_quant_d;
 
-    for (k = base_channel; k < s->prim_channels; k++) {
+    for (k = base_channel; k < s->audio_header.prim_channels; k++) {
+        float (*subband_samples)[8] = 
s->dca_chan[k].subband_samples[block_index];
         float rscale[DCA_SUBBANDS];
 
         if (get_bits_left(&s->gb) < 0)
             return AVERROR_INVALIDDATA;
 
-        for (l = 0; l < s->vq_start_subband[k]; l++) {
+        for (l = 0; l < s->audio_header.vq_start_subband[k]; l++) {
             int m;
 
             /* Select the mid-tread linear quantizer */
-            int abits = s->bitalloc[k][l];
+            int abits = s->dca_chan[k].bitalloc[l];
 
             float quant_step_size = quant_step_table[abits];
 
@@ -820,7 +824,7 @@ static int dca_subsubframe(DCAContext *s, int base_channel, 
int block_index)
              */
 
             /* Select quantization index code book */
-            int sel = s->quant_index_huffman[k][abits];
+            int sel = s->audio_header.quant_index_huffman[k][abits];
 
             /*
              * Extract bits from the bit stream
@@ -830,9 +834,10 @@ static int dca_subsubframe(DCAContext *s, int 
base_channel, int block_index)
                 memset(block + SAMPLES_PER_SUBBAND * l, 0, SAMPLES_PER_SUBBAND 
* sizeof(block[0]));
             } else {
                 /* Deal with transients */
-                int sfi = s->transition_mode[k][l] && subsubframe >= 
s->transition_mode[k][l];
-                rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
-                            s->scalefactor_adj[k][sel];
+                int sfi = s->dca_chan[k].transition_mode[l] &&
+                    subsubframe >= s->dca_chan[k].transition_mode[l];
+                rscale[l] = quant_step_size * 
s->dca_chan[k].scale_factor[l][sfi] *
+                            s->audio_header.scalefactor_adj[k][sel];
 
                 if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
                     if (abits <= 7) {
@@ -865,54 +870,61 @@ static int dca_subsubframe(DCAContext *s, int 
base_channel, int block_index)
             }
         }
 
-        s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, 
subband_samples[k][0],
-                                               block, rscale, 
SAMPLES_PER_SUBBAND * s->vq_start_subband[k]);
+        s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, 
subband_samples[0],
+                                               block, rscale, 
SAMPLES_PER_SUBBAND * s->audio_header.vq_start_subband[k]);
 
-        for (l = 0; l < s->vq_start_subband[k]; l++) {
+        for (l = 0; l < s->audio_header.vq_start_subband[k]; l++) {
             int m;
             /*
              * Inverse ADPCM if in prediction mode
              */
-            if (s->prediction_mode[k][l]) {
+            if (s->dca_chan[k].prediction_mode[l]) {
                 int n;
                 if (s->predictor_history)
-                    subband_samples[k][l][0] += 
(ff_dca_adpcm_vb[s->prediction_vq[k][l]][0] *
-                                                 
s->subband_samples_hist[k][l][3] +
-                                                 
ff_dca_adpcm_vb[s->prediction_vq[k][l]][1] *
-                                                 
s->subband_samples_hist[k][l][2] +
-                                                 
ff_dca_adpcm_vb[s->prediction_vq[k][l]][2] *
-                                                 
s->subband_samples_hist[k][l][1] +
-                                                 
ff_dca_adpcm_vb[s->prediction_vq[k][l]][3] *
-                                                 
s->subband_samples_hist[k][l][0]) *
+                    subband_samples[l][0] += 
(ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][0] *
+                                                 
s->dca_chan[k].subband_samples_hist[l][3] +
+                                                 
ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][1] *
+                                                 
s->dca_chan[k].subband_samples_hist[l][2] +
+                                                 
ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][2] *
+                                                 
s->dca_chan[k].subband_samples_hist[l][1] +
+                                                 
ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][3] *
+                                                 
s->dca_chan[k].subband_samples_hist[l][0]) *
                                                 (1.0f / 8192);
                 for (m = 1; m < SAMPLES_PER_SUBBAND; m++) {
-                    float sum = ff_dca_adpcm_vb[s->prediction_vq[k][l]][0] *
-                                subband_samples[k][l][m - 1];
+                    float sum = 
ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][0] *
+                                subband_samples[l][m - 1];
                     for (n = 2; n <= 4; n++)
                         if (m >= n)
-                            sum += ff_dca_adpcm_vb[s->prediction_vq[k][l]][n - 
1] *
-                                   subband_samples[k][l][m - n];
+                            sum += 
ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][n - 1] *
+                                   subband_samples[l][m - n];
                         else if (s->predictor_history)
-                            sum += ff_dca_adpcm_vb[s->prediction_vq[k][l]][n - 
1] *
-                                   s->subband_samples_hist[k][l][m - n + 4];
-                    subband_samples[k][l][m] += sum * 1.0f / 8192;
+                            sum += 
ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][n - 1] *
+                                   s->dca_chan[k].subband_samples_hist[l][m - 
n + 4];
+                    subband_samples[l][m] += sum * 1.0f / 8192;
                 }
             }
+
         }
+        /* Backup predictor history for adpcm */
+        for (l = 0; l < DCA_SUBBANDS; l++)
+            AV_COPY128(s->dca_chan[k].subband_samples_hist[l], 
&subband_samples[l][4]);
+
 
         /*
          * Decode VQ encoded high frequencies
          */
-        if (s->subband_activity[k] > s->vq_start_subband[k]) {
+        if (s->audio_header.subband_activity[k] > 
s->audio_header.vq_start_subband[k]) {
             if (!s->debug_flag & 0x01) {
                 av_log(s->avctx, AV_LOG_DEBUG,
                        "Stream with high frequencies VQ coding\n");
                 s->debug_flag |= 0x01;
             }
-            s->dcadsp.decode_hf(subband_samples[k], s->high_freq_vq[k],
+
+            s->dcadsp.decode_hf(subband_samples, s->dca_chan[k].high_freq_vq,
                                 ff_dca_high_freq_vq, subsubframe * 
SAMPLES_PER_SUBBAND,
-                                s->scale_factor[k], s->vq_start_subband[k],
-                                s->subband_activity[k]);
+                                s->dca_chan[k].scale_factor,
+                                s->audio_header.vq_start_subband[k],
+                                s->audio_header.subband_activity[k]);
         }
     }
 
@@ -924,17 +936,11 @@ static int dca_subsubframe(DCAContext *s, int 
base_channel, int block_index)
         }
     }
 
-    /* Backup predictor history for adpcm */
-    for (k = base_channel; k < s->prim_channels; k++)
-        for (l = 0; l < s->vq_start_subband[k]; l++)
-            AV_COPY128(s->subband_samples_hist[k][l], 
&subband_samples[k][l][4]);
-
     return 0;
 }
 
 static int dca_filter_channels(DCAContext *s, int block_index, int upsample)
 {
-    float (*subband_samples)[DCA_SUBBANDS][SAMPLES_PER_SUBBAND] = 
s->subband_samples[block_index];
     int k;
 
     if (upsample) {
@@ -945,18 +951,22 @@ static int dca_filter_channels(DCAContext *s, int 
block_index, int upsample)
         }
 
         /* 64 subbands QMF */
-        for (k = 0; k < s->prim_channels; k++) {
+        for (k = 0; k < s->audio_header.prim_channels; k++) {
+            float (*subband_samples)[SAMPLES_PER_SUBBAND] = 
s->dca_chan[k].subband_samples[block_index];
+
             if (s->channel_order_tab[k] >= 0)
-                qmf_64_subbands(s, k, subband_samples[k],
+                qmf_64_subbands(s, k, subband_samples,
                                 s->samples_chanptr[s->channel_order_tab[k]],
                                 /* Upsampling needs a factor 2 here. */
                                 M_SQRT2 / 32768.0);
         }
     } else {
         /* 32 subbands QMF */
-        for (k = 0; k < s->prim_channels; k++) {
+        for (k = 0; k < s->audio_header.prim_channels; k++) {
+            float (*subband_samples)[SAMPLES_PER_SUBBAND] = 
s->dca_chan[k].subband_samples[block_index];
+
             if (s->channel_order_tab[k] >= 0)
-                qmf_32_subbands(s, k, subband_samples[k],
+                qmf_32_subbands(s, k, subband_samples,
                                 s->samples_chanptr[s->channel_order_tab[k]],
                                 M_SQRT1_2 / 32768.0);
         }
@@ -983,7 +993,7 @@ static int dca_filter_channels(DCAContext *s, int 
block_index, int upsample)
     /* FIXME: This downmixing is probably broken with upsample.
      * Probably totally broken also with XLL in general. */
     /* Downmixing to Stereo */
-    if (s->prim_channels + !!s->lfe > 2 &&
+    if (s->audio_header.prim_channels + !!s->lfe > 2 &&
         s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
         dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
                     s->channel_order_tab);
@@ -1060,7 +1070,7 @@ static int dca_subframe_footer(DCAContext *s, int 
base_channel)
                     return AVERROR_INVALIDDATA;
                 }
                 for (out = 0; out < ff_dca_channels[s->core_downmix_amode]; 
out++) {
-                    for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
+                    for (in = 0; in < s->audio_header.prim_channels + 
!!s->lfe; in++) {
                         uint16_t tmp = get_bits(&s->gb, 9);
                         if ((tmp & 0xFF) > 241) {
                             av_log(s->avctx, AV_LOG_ERROR,
@@ -1106,9 +1116,9 @@ static int dca_decode_block(DCAContext *s, int 
base_channel, int block_index)
     int ret;
 
     /* Sanity check */
-    if (s->current_subframe >= s->subframes) {
+    if (s->current_subframe >= s->audio_header.subframes) {
         av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
-               s->current_subframe, s->subframes);
+               s->current_subframe, s->audio_header.subframes);
         return AVERROR_INVALIDDATA;
     }
 
@@ -1128,7 +1138,7 @@ static int dca_decode_block(DCAContext *s, int 
base_channel, int block_index)
         s->current_subsubframe = 0;
         s->current_subframe++;
     }
-    if (s->current_subframe >= s->subframes) {
+    if (s->current_subframe >= s->audio_header.subframes) {
         /* Read subframe footer */
         if ((ret = dca_subframe_footer(s, base_channel)))
             return ret;
@@ -1169,7 +1179,7 @@ static int scan_for_extensions(AVCodecContext *avctx)
             case DCA_SYNCWORD_XCH: {
                 int ext_amode, xch_fsize;
 
-                s->xch_base_channel = s->prim_channels;
+                s->xch_base_channel = s->audio_header.prim_channels;
 
                 /* validate sync word using XCHFSIZE field */
                 xch_fsize = show_bits(&s->gb, 10);
@@ -1254,7 +1264,7 @@ static int set_channel_layout(AVCodecContext *avctx, int 
channels, int num_core_
     if (s->amode < 16) {
         avctx->channel_layout = dca_core_channel_layout[s->amode];
 
-        if (s->prim_channels + !!s->lfe > 2 &&
+        if (s->audio_header.prim_channels + !!s->lfe > 2 &&
             avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
             /*
              * Neither the core's auxiliary data nor our default tables contain
@@ -1289,7 +1299,7 @@ static int set_channel_layout(AVCodecContext *avctx, int 
channels, int num_core_
         if (num_core_channels + !!s->lfe > 2 &&
             avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
             channels              = 2;
-            s->output             = s->prim_channels == 2 ? s->amode : 
DCA_STEREO;
+            s->output             = s->audio_header.prim_channels == 2 ? 
s->amode : DCA_STEREO;
             avctx->channel_layout = AV_CH_LAYOUT_STEREO;
 
             /* Stereo downmix coefficients
@@ -1315,7 +1325,7 @@ static int set_channel_layout(AVCodecContext *avctx, int 
channels, int num_core_
                 if (num_core_channels + !!s->lfe >
                     FF_ARRAY_ELEMS(ff_dca_default_coeffs[0])) {
                     avpriv_request_sample(s->avctx, "Downmixing %d channels",
-                                          s->prim_channels + !!s->lfe);
+                                          s->audio_header.prim_channels + 
!!s->lfe);
                     return AVERROR_PATCHWELCOME;
                 }
                 for (i = 0; i < num_core_channels + !!s->lfe; i++) {
@@ -1387,7 +1397,7 @@ static int dca_decode_frame(AVCodecContext *avctx, void 
*data,
     }
 
     /* record number of core channels incase less than max channels are 
requested */
-    num_core_channels = s->prim_channels;
+    num_core_channels = s->audio_header.prim_channels;
 
     if (s->ext_coding)
         s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
@@ -1398,7 +1408,7 @@ static int dca_decode_frame(AVCodecContext *avctx, void 
*data,
 
     avctx->profile = s->profile;
 
-    full_channels = channels = s->prim_channels + !!s->lfe;
+    full_channels = channels = s->audio_header.prim_channels + !!s->lfe;
 
     ret = set_channel_layout(avctx, channels, num_core_channels);
     if (ret < 0)

_______________________________________________
ffmpeg-cvslog mailing list
ffmpeg-cvslog@ffmpeg.org
http://ffmpeg.org/mailman/listinfo/ffmpeg-cvslog

Reply via email to