On 5/25/2025 7:30 PM, Alan Grayson wrote:


On Sunday, May 25, 2025 at 5:20:08 PM UTC-6 Brent Meeker wrote:



    On 5/25/2025 2:17 PM, Alan Grayson wrote:


    On Saturday, May 24, 2025 at 11:31:27 PM UTC-6 Brent Meeker wrote:



        On 5/24/2025 9:50 PM, Alan Grayson wrote:


        On Saturday, May 17, 2025 at 2:23:35 PM UTC-6 Brent Meeker
        wrote:



            On 5/16/2025 8:34 PM, Alan Grayson wrote:


            On Friday, May 16, 2025 at 2:14:57 AM UTC-6 Alan
            Grayson wrote:

                On Thursday, May 15, 2025 at 2:13:53 PM UTC-6 John
                Clark wrote:

                    On Wed, May 14, 2025 at 4:39 PM Alan Grayson
                    <[email protected]> wrote:

                        /> The Coulomb field of a point charge
                        diverages as the distance to the charge
                        decreases to zero. Is this singularity
                        resolved in the classical or quantum theory
                        of E&M?/


                    *In classical physics the amount of energy in a
                    point electrical charge such as an electron is
                    infinite, quantum electrodynamics avoids
                    infinity in a process called "renormalization".
                    The point charge interacts with a cloud a
                    virtual particles that pop in and out of
                    existence with each having their own Feynman
                    diagram;  the infinity from one part of the
                    calculation is canceled out by another infinity
                    in another part of the calculation, so you're
                    left with a finite charge that agrees with
                    experimental results better than one part in a
                    billion. It has been called the most accurate
                    prediction in the entire history of science.*

                    *Richard Feynman had more to do with developing
                    renormalization than anyone and received the
                    Nobel prize for it, but he was never satisfied
                    with it because, although it worked wonderfully
                    well,  this canceling out inconsistencies
                    business is not mathematically rigorous and so
                    it cannot be proven to contain no
                    inconsistencies. Feynman said this:*

                    *"/The shell game that we play is technically
                    called 'renormalization'. But no matter how
                    clever the word, it is still what I would call
                    a dippy process! It's a way of sweeping the
                    problems under the rug/."*
                    *
                    *
                    *A few years later during his Nobel Prize
                    acceptance speech he said:*

                    /*"It has not yet become obvious to me that
                    there's no real problem. I cannot define the
                    real problem; therefore, I suspect there's no
                    real problem, but I'm not sure there's no real
                    problem."*/
                    */
                    /*
                    *John K Clark    See what's on my new list at
                    Extropolis
                    <https://groups.google.com/g/extropolis>*


                Do point charges exist in quantum field theory? Is
                it the electric field which is quantized? If not
                that, then what?  TY, AG


            What I am asking is whether Feynman's renormalization
            procedure is specifically applied to a single point
            charge in quantum E&M? AG
            You mean, "Is the electron assumed a point particle?".  
            Yes, but you exchange photons not charge.  At each
            photon-electron vertex you get a coupling constant of
            /g=sqrt(4pi alpha)/ where alpha is the fine-structure
            constant /e^2/(hbar*c^2)=1/137/ So that's the only way
            that the electron charge, /e/, enters and it's the
            experimental charge value.  No renormalization is needed
            since /g<<1/ and the terms don't blow up.

            For the strong force, even the vacuum propagator term
            blows up, so you subtract it off from all the higher
            order terms to get a finite remainder.

            Brent


        Is the classical singularity in the Coulomb force caused by
        the assumption of point sized particles, that have zero volume?
        Yes.


        If particles were modeled as very smal but continuous
        regions of charge,would the singularity go away
        Yes.


        when the distance to the center of the charge is less than
        its radius? AG
        ??


    I was referring to the situation where the test charge is within
    the boundary of the source charge, assuming the latter has a
    finite radius. If the singularity is resolved by modifying the
    model of the source charge, can we conclude that a quantum theory
    of the EM field is NOT necessary to resolve this particular
    singularity? If so, what's the motivation of developing a quantum
    theory of EM? AG
    The notional singularity isn't the only reason for wanting a
    quantum theory of gravity.  It's a also a matter of consistency in
    interactions and what goes on the right-hand side of Einstein's
    equation.

    Brent


I was referring to a quantum theory of EM, not GR. Are all the singularities in the classical theory of EM resolved by changing the model of particles? AG
They're resolved by quantum field theory, which I suppose could the thought of as a drastic change in the model of particles.

Brent

--
You received this message because you are subscribed to the Google Groups 
"Everything List" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion visit 
https://groups.google.com/d/msgid/everything-list/6fcdc21c-c19e-437a-9b2c-0c97176ad3f0%40gmail.com.

Reply via email to