Hi Christian,

I go back this old email to ask a question.

Quote from your email:
“Those ranges can then be used to implement the SVM feature required for higher 
level APIs and not something you need at the UAPI or even inside the low level 
kernel memory management.”
“SVM is a high level concept of OpenCL, Cuda, ROCm etc.. This should not have 
any influence on the design of the kernel UAPI.”

There are two category of SVM:

  1.  driver svm allocator: this is implemented in user space,  i.g., 
cudaMallocManaged (cuda) or zeMemAllocShared (L0) or clSVMAlloc(openCL). Intel 
already have gem_create/vm_bind in xekmd and our umd implemented clSVMAlloc and 
zeMemAllocShared on top of gem_create/vm_bind. Range A..B of the process 
address space is mapped into a range C..D of the GPU address space, exactly as 
you said.
  2.  system svm allocator:  This doesn’t introduce extra driver API for memory 
allocation. Any valid CPU virtual address can be used directly transparently in 
a GPU program without any extra driver API call. Quote from kernel 
Documentation/vm/hmm.hst: “Any application memory region (private anonymous, 
shared memory, or regular file backed memory) can be used by a device 
transparently” and “to share the address space by duplicating the CPU page 
table in the device page table so the same address points to the same physical 
memory for any valid main memory address in the process address space”. In 
system svm allocator, we don’t need that A..B C..D mapping.

It looks like you were talking of 1). Were you?

Oak
From: Christian König <christian.koe...@amd.com>
Sent: Wednesday, January 24, 2024 3:33 AM
To: Zeng, Oak <oak.z...@intel.com>; Danilo Krummrich <d...@redhat.com>; Dave 
Airlie <airl...@redhat.com>; Daniel Vetter <dan...@ffwll.ch>; Felix Kuehling 
<felix.kuehl...@amd.com>
Cc: Welty, Brian <brian.we...@intel.com>; dri-devel@lists.freedesktop.org; 
intel...@lists.freedesktop.org; Bommu, Krishnaiah <krishnaiah.bo...@intel.com>; 
Ghimiray, Himal Prasad <himal.prasad.ghimi...@intel.com>; 
thomas.hellst...@linux.intel.com; Vishwanathapura, Niranjana 
<niranjana.vishwanathap...@intel.com>; Brost, Matthew 
<matthew.br...@intel.com>; Gupta, saurabhg <saurabhg.gu...@intel.com>
Subject: Re: Making drm_gpuvm work across gpu devices

Am 23.01.24 um 20:37 schrieb Zeng, Oak:

[SNIP]



Yes most API are per device based.



One exception I know is actually the kfd SVM API. If you look at the svm_ioctl 
function, it is per-process based. Each kfd_process represent a process across 
N gpu devices.

Yeah and that was a big mistake in my opinion. We should really not do that 
ever again.



Need to say, kfd SVM represent a shared virtual address space across CPU and 
all GPU devices on the system. This is by the definition of SVM (shared virtual 
memory). This is very different from our legacy gpu *device* driver which works 
for only one device (i.e., if you want one device to access another device's 
memory, you will have to use dma-buf export/import etc).

Exactly that thinking is what we have currently found as blocker for a 
virtualization projects. Having SVM as device independent feature which somehow 
ties to the process address space turned out to be an extremely bad idea.

The background is that this only works for some use cases but not all of them.

What's working much better is to just have a mirror functionality which says 
that a range A..B of the process address space is mapped into a range C..D of 
the GPU address space.

Those ranges can then be used to implement the SVM feature required for higher 
level APIs and not something you need at the UAPI or even inside the low level 
kernel memory management.

When you talk about migrating memory to a device you also do this on a per 
device basis and *not* tied to the process address space. If you then get 
crappy performance because userspace gave contradicting information where to 
migrate memory then that's a bug in userspace and not something the kernel 
should try to prevent somehow.

[SNIP]


I think if you start using the same drm_gpuvm for multiple devices you

will sooner or later start to run into the same mess we have seen with

KFD, where we moved more and more functionality from the KFD to the DRM

render node because we found that a lot of the stuff simply doesn't work

correctly with a single object to maintain the state.



As I understand it, KFD is designed to work across devices. A single pseudo 
/dev/kfd device represent all hardware gpu devices. That is why during kfd 
open, many pdd (process device data) is created, each for one hardware device 
for this process.

Yes, I'm perfectly aware of that. And I can only repeat myself that I see this 
design as a rather extreme failure. And I think it's one of the reasons why 
NVidia is so dominant with Cuda.

This whole approach KFD takes was designed with the idea of extending the CPU 
process into the GPUs, but this idea only works for a few use cases and is not 
something we should apply to drivers in general.

A very good example are virtualization use cases where you end up with CPU 
address != GPU address because the VAs are actually coming from the guest VM 
and not the host process.

SVM is a high level concept of OpenCL, Cuda, ROCm etc.. This should not have 
any influence on the design of the kernel UAPI.

If you want to do something similar as KFD for Xe I think you need to get 
explicit permission to do this from Dave and Daniel and maybe even Linus.

Regards,
Christian.

Reply via email to