From: Eric Biggers <ebigg...@google.com>

Add an implementation of finup_mb to sha256-ce, using an interleaving
factor of 2.  It interleaves a finup operation for two equal-length
messages that share a common prefix.  dm-verity and fs-verity will take
advantage of this for greatly improved performance on capable CPUs.

This increases the throughput of SHA-256 hashing 4096-byte messages by
the following amounts on the following CPUs:

    ARM Cortex-X1: 70%
    ARM Cortex-X3: 68%
    ARM Cortex-A76: 65%
    ARM Cortex-A715: 43%
    ARM Cortex-A510: 25%
    ARM Cortex-A55: 8%

Reviewed-by: Ard Biesheuvel <a...@kernel.org>
Reviewed-by: Sami Tolvanen <samitolva...@google.com>
Acked-by: Ard Biesheuvel <a...@kernel.org>
Signed-off-by: Eric Biggers <ebigg...@google.com>
---
 arch/arm64/crypto/sha2-ce-core.S | 281 ++++++++++++++++++++++++++++++-
 arch/arm64/crypto/sha2-ce-glue.c |  40 +++++
 2 files changed, 315 insertions(+), 6 deletions(-)

diff --git a/arch/arm64/crypto/sha2-ce-core.S b/arch/arm64/crypto/sha2-ce-core.S
index fce84d88ddb2c..fb5d5227e585c 100644
--- a/arch/arm64/crypto/sha2-ce-core.S
+++ b/arch/arm64/crypto/sha2-ce-core.S
@@ -68,22 +68,26 @@
        .word           0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5
        .word           0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3
        .word           0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208
        .word           0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
 
+       .macro load_round_constants     tmp
+       adr_l           \tmp, .Lsha2_rcon
+       ld1             { v0.4s- v3.4s}, [\tmp], #64
+       ld1             { v4.4s- v7.4s}, [\tmp], #64
+       ld1             { v8.4s-v11.4s}, [\tmp], #64
+       ld1             {v12.4s-v15.4s}, [\tmp]
+       .endm
+
        /*
         * int __sha256_ce_transform(struct sha256_ce_state *sst, u8 const *src,
         *                           int blocks)
         */
        .text
 SYM_FUNC_START(__sha256_ce_transform)
-       /* load round constants */
-       adr_l           x8, .Lsha2_rcon
-       ld1             { v0.4s- v3.4s}, [x8], #64
-       ld1             { v4.4s- v7.4s}, [x8], #64
-       ld1             { v8.4s-v11.4s}, [x8], #64
-       ld1             {v12.4s-v15.4s}, [x8]
+
+       load_round_constants    x8
 
        /* load state */
        ld1             {dgav.4s, dgbv.4s}, [x0]
 
        /* load sha256_ce_state::finalize */
@@ -153,5 +157,270 @@ CPU_LE(   rev32           v19.16b, v19.16b        )
        /* store new state */
 3:     st1             {dgav.4s, dgbv.4s}, [x0]
        mov             w0, w2
        ret
 SYM_FUNC_END(__sha256_ce_transform)
+
+       .unreq dga
+       .unreq dgav
+       .unreq dgb
+       .unreq dgbv
+       .unreq t0
+       .unreq t1
+       .unreq dg0q
+       .unreq dg0v
+       .unreq dg1q
+       .unreq dg1v
+       .unreq dg2q
+       .unreq dg2v
+
+       // parameters for __sha256_ce_finup2x()
+       sctx            .req    x0
+       data1           .req    x1
+       data2           .req    x2
+       len             .req    w3
+       out1            .req    x4
+       out2            .req    x5
+
+       // other scalar variables
+       count           .req    x6
+       final_step      .req    w7
+
+       // x8-x9 are used as temporaries.
+
+       // v0-v15 are used to cache the SHA-256 round constants.
+       // v16-v19 are used for the message schedule for the first message.
+       // v20-v23 are used for the message schedule for the second message.
+       // v24-v31 are used for the state and temporaries as given below.
+       // *_a are for the first message and *_b for the second.
+       state0_a_q      .req    q24
+       state0_a        .req    v24
+       state1_a_q      .req    q25
+       state1_a        .req    v25
+       state0_b_q      .req    q26
+       state0_b        .req    v26
+       state1_b_q      .req    q27
+       state1_b        .req    v27
+       t0_a            .req    v28
+       t0_b            .req    v29
+       t1_a_q          .req    q30
+       t1_a            .req    v30
+       t1_b_q          .req    q31
+       t1_b            .req    v31
+
+#define OFFSETOF_COUNT 32      // offsetof(struct sha256_state, count)
+#define OFFSETOF_BUF   40      // offsetof(struct sha256_state, buf)
+// offsetof(struct sha256_state, state) is assumed to be 0.
+
+       // Do 4 rounds of SHA-256 for each of two messages (interleaved).  m0_a
+       // and m0_b contain the current 4 message schedule words for the first
+       // and second message respectively.
+       //
+       // If not all the message schedule words have been computed yet, then
+       // this also computes 4 more message schedule words for each message.
+       // m1_a-m3_a contain the next 3 groups of 4 message schedule words for
+       // the first message, and likewise m1_b-m3_b for the second.  After
+       // consuming the current value of m0_a, this macro computes the group
+       // after m3_a and writes it to m0_a, and likewise for *_b.  This means
+       // that the next (m0_a, m1_a, m2_a, m3_a) is the current (m1_a, m2_a,
+       // m3_a, m0_a), and likewise for *_b, so the caller must cycle through
+       // the registers accordingly.
+       .macro  do_4rounds_2x   i, k,  m0_a, m1_a, m2_a, m3_a,  \
+                                      m0_b, m1_b, m2_b, m3_b
+       add             t0_a\().4s, \m0_a\().4s, \k\().4s
+       add             t0_b\().4s, \m0_b\().4s, \k\().4s
+       .if \i < 48
+       sha256su0       \m0_a\().4s, \m1_a\().4s
+       sha256su0       \m0_b\().4s, \m1_b\().4s
+       sha256su1       \m0_a\().4s, \m2_a\().4s, \m3_a\().4s
+       sha256su1       \m0_b\().4s, \m2_b\().4s, \m3_b\().4s
+       .endif
+       mov             t1_a.16b, state0_a.16b
+       mov             t1_b.16b, state0_b.16b
+       sha256h         state0_a_q, state1_a_q, t0_a\().4s
+       sha256h         state0_b_q, state1_b_q, t0_b\().4s
+       sha256h2        state1_a_q, t1_a_q, t0_a\().4s
+       sha256h2        state1_b_q, t1_b_q, t0_b\().4s
+       .endm
+
+       .macro  do_16rounds_2x  i, k0, k1, k2, k3
+       do_4rounds_2x   \i + 0,  \k0,  v16, v17, v18, v19,  v20, v21, v22, v23
+       do_4rounds_2x   \i + 4,  \k1,  v17, v18, v19, v16,  v21, v22, v23, v20
+       do_4rounds_2x   \i + 8,  \k2,  v18, v19, v16, v17,  v22, v23, v20, v21
+       do_4rounds_2x   \i + 12, \k3,  v19, v16, v17, v18,  v23, v20, v21, v22
+       .endm
+
+//
+// void __sha256_ce_finup2x(const struct sha256_state *sctx,
+//                         const u8 *data1, const u8 *data2, int len,
+//                         u8 out1[SHA256_DIGEST_SIZE],
+//                         u8 out2[SHA256_DIGEST_SIZE]);
+//
+// This function computes the SHA-256 digests of two messages |data1| and
+// |data2| that are both |len| bytes long, starting from the initial state
+// |sctx|.  |len| must be at least SHA256_BLOCK_SIZE.
+//
+// The instructions for the two SHA-256 operations are interleaved.  On many
+// CPUs, this is almost twice as fast as hashing each message individually due
+// to taking better advantage of the CPU's SHA-256 and SIMD throughput.
+//
+SYM_FUNC_START(__sha256_ce_finup2x)
+       sub             sp, sp, #128
+       mov             final_step, #0
+       load_round_constants    x8
+
+       // Load the initial state from sctx->state.
+       ld1             {state0_a.4s-state1_a.4s}, [sctx]
+
+       // Load sctx->count.  Take the mod 64 of it to get the number of bytes
+       // that are buffered in sctx->buf.  Also save it in a register with len
+       // added to it.
+       ldr             x8, [sctx, #OFFSETOF_COUNT]
+       add             count, x8, len, sxtw
+       and             x8, x8, #63
+       cbz             x8, .Lfinup2x_enter_loop        // No bytes buffered?
+
+       // x8 bytes (1 to 63) are currently buffered in sctx->buf.  Load them
+       // followed by the first 64 - x8 bytes of data.  Since len >= 64, we
+       // just load 64 bytes from each of sctx->buf, data1, and data2
+       // unconditionally and rearrange the data as needed.
+       add             x9, sctx, #OFFSETOF_BUF
+       ld1             {v16.16b-v19.16b}, [x9]
+       st1             {v16.16b-v19.16b}, [sp]
+
+       ld1             {v16.16b-v19.16b}, [data1], #64
+       add             x9, sp, x8
+       st1             {v16.16b-v19.16b}, [x9]
+       ld1             {v16.4s-v19.4s}, [sp]
+
+       ld1             {v20.16b-v23.16b}, [data2], #64
+       st1             {v20.16b-v23.16b}, [x9]
+       ld1             {v20.4s-v23.4s}, [sp]
+
+       sub             len, len, #64
+       sub             data1, data1, x8
+       sub             data2, data2, x8
+       add             len, len, w8
+       mov             state0_b.16b, state0_a.16b
+       mov             state1_b.16b, state1_a.16b
+       b               .Lfinup2x_loop_have_data
+
+.Lfinup2x_enter_loop:
+       sub             len, len, #64
+       mov             state0_b.16b, state0_a.16b
+       mov             state1_b.16b, state1_a.16b
+.Lfinup2x_loop:
+       // Load the next two data blocks.
+       ld1             {v16.4s-v19.4s}, [data1], #64
+       ld1             {v20.4s-v23.4s}, [data2], #64
+.Lfinup2x_loop_have_data:
+       // Convert the words of the data blocks from big endian.
+CPU_LE(        rev32           v16.16b, v16.16b        )
+CPU_LE(        rev32           v17.16b, v17.16b        )
+CPU_LE(        rev32           v18.16b, v18.16b        )
+CPU_LE(        rev32           v19.16b, v19.16b        )
+CPU_LE(        rev32           v20.16b, v20.16b        )
+CPU_LE(        rev32           v21.16b, v21.16b        )
+CPU_LE(        rev32           v22.16b, v22.16b        )
+CPU_LE(        rev32           v23.16b, v23.16b        )
+.Lfinup2x_loop_have_bswapped_data:
+
+       // Save the original state for each block.
+       st1             {state0_a.4s-state1_b.4s}, [sp]
+
+       // Do the SHA-256 rounds on each block.
+       do_16rounds_2x  0,  v0, v1, v2, v3
+       do_16rounds_2x  16, v4, v5, v6, v7
+       do_16rounds_2x  32, v8, v9, v10, v11
+       do_16rounds_2x  48, v12, v13, v14, v15
+
+       // Add the original state for each block.
+       ld1             {v16.4s-v19.4s}, [sp]
+       add             state0_a.4s, state0_a.4s, v16.4s
+       add             state1_a.4s, state1_a.4s, v17.4s
+       add             state0_b.4s, state0_b.4s, v18.4s
+       add             state1_b.4s, state1_b.4s, v19.4s
+
+       // Update len and loop back if more blocks remain.
+       sub             len, len, #64
+       tbz             len, #31, .Lfinup2x_loop        // len >= 0?
+
+       // Check if any final blocks need to be handled.
+       // final_step = 2: all done
+       // final_step = 1: need to do count-only padding block
+       // final_step = 0: need to do the block with 0x80 padding byte
+       tbnz            final_step, #1, .Lfinup2x_done
+       tbnz            final_step, #0, .Lfinup2x_finalize_countonly
+       add             len, len, #64
+       cbz             len, .Lfinup2x_finalize_blockaligned
+
+       // Not block-aligned; 1 <= len <= 63 data bytes remain.  Pad the block.
+       // To do this, write the padding starting with the 0x80 byte to
+       // &sp[64].  Then for each message, copy the last 64 data bytes to sp
+       // and load from &sp[64 - len] to get the needed padding block.  This
+       // code relies on the data buffers being >= 64 bytes in length.
+       sub             w8, len, #64            // w8 = len - 64
+       add             data1, data1, w8, sxtw  // data1 += len - 64
+       add             data2, data2, w8, sxtw  // data2 += len - 64
+       mov             x9, 0x80
+       fmov            d16, x9
+       movi            v17.16b, #0
+       stp             q16, q17, [sp, #64]
+       stp             q17, q17, [sp, #96]
+       sub             x9, sp, w8, sxtw        // x9 = &sp[64 - len]
+       cmp             len, #56
+       b.ge            1f              // will count spill into its own block?
+       lsl             count, count, #3
+       rev             count, count
+       str             count, [x9, #56]
+       mov             final_step, #2  // won't need count-only block
+       b               2f
+1:
+       mov             final_step, #1  // will need count-only block
+2:
+       ld1             {v16.16b-v19.16b}, [data1]
+       st1             {v16.16b-v19.16b}, [sp]
+       ld1             {v16.4s-v19.4s}, [x9]
+       ld1             {v20.16b-v23.16b}, [data2]
+       st1             {v20.16b-v23.16b}, [sp]
+       ld1             {v20.4s-v23.4s}, [x9]
+       b               .Lfinup2x_loop_have_data
+
+       // Prepare a padding block, either:
+       //
+       //      {0x80, 0, 0, 0, ..., count (as __be64)}
+       //      This is for a block aligned message.
+       //
+       //      {   0, 0, 0, 0, ..., count (as __be64)}
+       //      This is for a message whose length mod 64 is >= 56.
+       //
+       // Pre-swap the endianness of the words.
+.Lfinup2x_finalize_countonly:
+       movi            v16.2d, #0
+       b               1f
+.Lfinup2x_finalize_blockaligned:
+       mov             x8, #0x80000000
+       fmov            d16, x8
+1:
+       movi            v17.2d, #0
+       movi            v18.2d, #0
+       ror             count, count, #29       // ror(lsl(count, 3), 32)
+       mov             v19.d[0], xzr
+       mov             v19.d[1], count
+       mov             v20.16b, v16.16b
+       movi            v21.2d, #0
+       movi            v22.2d, #0
+       mov             v23.16b, v19.16b
+       mov             final_step, #2
+       b               .Lfinup2x_loop_have_bswapped_data
+
+.Lfinup2x_done:
+       // Write the two digests with all bytes in the correct order.
+CPU_LE(        rev32           state0_a.16b, state0_a.16b      )
+CPU_LE(        rev32           state1_a.16b, state1_a.16b      )
+CPU_LE(        rev32           state0_b.16b, state0_b.16b      )
+CPU_LE(        rev32           state1_b.16b, state1_b.16b      )
+       st1             {state0_a.4s-state1_a.4s}, [out1]
+       st1             {state0_b.4s-state1_b.4s}, [out2]
+       add             sp, sp, #128
+       ret
+SYM_FUNC_END(__sha256_ce_finup2x)
diff --git a/arch/arm64/crypto/sha2-ce-glue.c b/arch/arm64/crypto/sha2-ce-glue.c
index 0a44d2e7ee1f7..b37cffc4191fb 100644
--- a/arch/arm64/crypto/sha2-ce-glue.c
+++ b/arch/arm64/crypto/sha2-ce-glue.c
@@ -31,10 +31,15 @@ extern const u32 sha256_ce_offsetof_count;
 extern const u32 sha256_ce_offsetof_finalize;
 
 asmlinkage int __sha256_ce_transform(struct sha256_ce_state *sst, u8 const 
*src,
                                     int blocks);
 
+asmlinkage void __sha256_ce_finup2x(const struct sha256_state *sctx,
+                                   const u8 *data1, const u8 *data2, int len,
+                                   u8 out1[SHA256_DIGEST_SIZE],
+                                   u8 out2[SHA256_DIGEST_SIZE]);
+
 static void sha256_ce_transform(struct sha256_state *sst, u8 const *src,
                                int blocks)
 {
        while (blocks) {
                int rem;
@@ -122,10 +127,43 @@ static int sha256_ce_digest(struct shash_desc *desc, 
const u8 *data,
 {
        sha256_base_init(desc);
        return sha256_ce_finup(desc, data, len, out);
 }
 
+static int sha256_ce_finup_mb(struct shash_desc *desc,
+                             const u8 * const data[], unsigned int len,
+                             u8 * const outs[], unsigned int num_msgs)
+{
+       struct sha256_ce_state *sctx = shash_desc_ctx(desc);
+
+       /*
+        * num_msgs != 2 should not happen here, since this algorithm sets
+        * mb_max_msgs=2, and the crypto API handles num_msgs <= 1 before
+        * calling into the algorithm's finup_mb method.
+        */
+       if (WARN_ON_ONCE(num_msgs != 2))
+               return -EOPNOTSUPP;
+
+       if (unlikely(!crypto_simd_usable()))
+               return -EOPNOTSUPP;
+
+       /* __sha256_ce_finup2x() assumes SHA256_BLOCK_SIZE <= len <= INT_MAX. */
+       if (unlikely(len < SHA256_BLOCK_SIZE || len > INT_MAX))
+               return -EOPNOTSUPP;
+
+       /* __sha256_ce_finup2x() assumes the following offsets. */
+       BUILD_BUG_ON(offsetof(struct sha256_state, state) != 0);
+       BUILD_BUG_ON(offsetof(struct sha256_state, count) != 32);
+       BUILD_BUG_ON(offsetof(struct sha256_state, buf) != 40);
+
+       kernel_neon_begin();
+       __sha256_ce_finup2x(&sctx->sst, data[0], data[1], len, outs[0],
+                           outs[1]);
+       kernel_neon_end();
+       return 0;
+}
+
 static int sha256_ce_export(struct shash_desc *desc, void *out)
 {
        struct sha256_ce_state *sctx = shash_desc_ctx(desc);
 
        memcpy(out, &sctx->sst, sizeof(struct sha256_state));
@@ -162,13 +200,15 @@ static struct shash_alg algs[] = { {
        .init                   = sha256_base_init,
        .update                 = sha256_ce_update,
        .final                  = sha256_ce_final,
        .finup                  = sha256_ce_finup,
        .digest                 = sha256_ce_digest,
+       .finup_mb               = sha256_ce_finup_mb,
        .export                 = sha256_ce_export,
        .import                 = sha256_ce_import,
        .descsize               = sizeof(struct sha256_ce_state),
+       .mb_max_msgs            = 2,
        .statesize              = sizeof(struct sha256_state),
        .digestsize             = SHA256_DIGEST_SIZE,
        .base                   = {
                .cra_name               = "sha256",
                .cra_driver_name        = "sha256-ce",
-- 
2.46.2


Reply via email to